Breakdown of Traditional Many-Body Theories for Correlated Electrons

Starting from the (Hubbard) model of an atom, we demonstrate that the uniqueness of the mapping from the interacting to the noninteracting Green function, G→G_{0}, is strongly violated, by providing numerous explicit examples of different G_{0} leading to the same physical G. We argue that there are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-08, Vol.119 (5), p.056402-056402, Article 056402
Hauptverfasser: Gunnarsson, O, Rohringer, G, Schäfer, T, Sangiovanni, G, Toschi, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starting from the (Hubbard) model of an atom, we demonstrate that the uniqueness of the mapping from the interacting to the noninteracting Green function, G→G_{0}, is strongly violated, by providing numerous explicit examples of different G_{0} leading to the same physical G. We argue that there are indeed infinitely many such G_{0}, with numerous crossings with the physical solution. We show that this rich functional structure is directly related to the divergence of certain classes of (irreducible vertex) diagrams, with important consequences for traditional many-body physics based on diagrammatic expansions. Physically, we ascribe the onset of these highly nonperturbative manifestations to the progressive suppression of the charge susceptibility induced by the formation of local magnetic moments and/or resonating valence bond (RVB) states in strongly correlated electron systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.119.056402