High-Pressure Behavior of Hydrogen and Deuterium at Low Temperatures
In situ high-pressure low-temperature high-quality Raman data for hydrogen and deuterium demonstrate the presence of a novel phase, phase II^{'}, unique to deuterium and distinct from the known phase II. Phase II^{'} of D_{2} is not observed in hydrogen, making it the only phase that does...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2017-08, Vol.119 (6), p.065301-065301, Article 065301 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In situ high-pressure low-temperature high-quality Raman data for hydrogen and deuterium demonstrate the presence of a novel phase, phase II^{'}, unique to deuterium and distinct from the known phase II. Phase II^{'} of D_{2} is not observed in hydrogen, making it the only phase that does not exist in both isotopes and occupies a significant part of P-T space from ∼25 to 110 GPa and below 125 K. For H_{2}, the data show that below 30 K the transition to phase II happens at as low as 73 GPa. The transformation from phase II to III commences at around ∼155 GPa and is completed by 170 GPa with the average pressure of ∼160 GPa being slightly higher than previously thought. The updated phase diagrams of H_{2} and D_{2} demonstrate the difference between the isotopes at low temperatures and moderate pressures, providing new information on the phase diagrams of both elements. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.119.065301 |