Scattering of biflagellate microswimmers from surfaces

We use a three-bead-spring model to investigate the dynamics of biflagellate microswimmers near a surface. While the primary dynamics and scattering are governed by geometric-dependent direct contact, the fluid flows generated by the swimmer locomotion are important in orienting it toward or away fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-08, Vol.96 (2-1), p.023102-023102, Article 023102
Hauptverfasser: Lushi, Enkeleida, Kantsler, Vasily, Goldstein, Raymond E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use a three-bead-spring model to investigate the dynamics of biflagellate microswimmers near a surface. While the primary dynamics and scattering are governed by geometric-dependent direct contact, the fluid flows generated by the swimmer locomotion are important in orienting it toward or away from the surface. Flagellar noise and in particular cell spinning about the main axis help a surface-trapped swimmer escape, whereas the time a swimmer spends at the surface depends on the incident angle. The dynamics results from a nuanced interplay of direct collisions, hydrodynamics, noise, and the swimmer geometry. We show that to correctly capture the dynamics of a biflagellate swimmer, minimal models need to resolve the shape asymmetry.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.96.023102