Iridium(iii) complexes with five-membered heterocyclic ligands for combined photodynamic therapy and photoactivated chemotherapy
Organometallic iridium complexes have emerged as potent anticancer agents in recent years. In this work, three cyclometalated iridium(iii) complexes Ir1-Ir3 containing monodentate five-membered heterocyclic ligands have been synthesized and characterized. Upon visible light (425 nm) irradiation, the...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2017-10, Vol.46 (39), p.13482-13491 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organometallic iridium complexes have emerged as potent anticancer agents in recent years. In this work, three cyclometalated iridium(iii) complexes Ir1-Ir3 containing monodentate five-membered heterocyclic ligands have been synthesized and characterized. Upon visible light (425 nm) irradiation, the five-membered heterocyclic ligands will dissociate from the metal centre. Moreover, Ir1-Ir3 can also act as effective singlet oxygen photosensitizers. Thus, Ir1-Ir3 can exert their light-mediated activation of anticancer effects by dual modes including ligand exchange reactions and generation of singlet oxygen (
O
) upon visible light irradiation. Notably, Ir1 displays a high phototoxicity index of 61.7 against human cancer cells. Further studies show that light-mediated anticancer properties exerted by Ir1-Ir3 occur through reactive oxygen species (ROS) generation, caspase activation, and eventually apoptosis induction. Our study demonstrates that these complexes can act as novel dual-mode light-mediated anticancer agents. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c7dt02477k |