Polynomial-Time Classical Simulation of Quantum Ferromagnets

We consider a family of quantum spin systems which includes, as special cases, the ferromagnetic XY model and ferromagnetic Ising model on any graph, with or without a transverse magnetic field. We prove that the partition function of any model in this family can be efficiently approximated to a giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-09, Vol.119 (10), p.100503-100503, Article 100503
Hauptverfasser: Bravyi, Sergey, Gosset, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a family of quantum spin systems which includes, as special cases, the ferromagnetic XY model and ferromagnetic Ising model on any graph, with or without a transverse magnetic field. We prove that the partition function of any model in this family can be efficiently approximated to a given relative error ε using a classical randomized algorithm with runtime polynomial in ε^{-1}, system size, and inverse temperature. As a consequence, we obtain a polynomial time algorithm which approximates the free energy or ground energy to a given additive error. We first show how to approximate the partition function by the perfect matching sum of a finite graph with positive edge weights. Although the perfect matching sum is not known to be efficiently approximable in general, the graphs obtained by our method have a special structure which facilitates efficient approximation via a randomized algorithm due to Jerrum and Sinclair.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.119.100503