Highly Deformable Origami Paper Photodetector Arrays

Flexible electronics will form the basis of many next-generation technologies, such as wearable devices, biomedical sensors, the Internet of things, and more. However, most flexible devices can bear strains of less than 300% as a result of stretching. In this work, we demonstrate a simple and low-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-10, Vol.11 (10), p.10230-10235
Hauptverfasser: Lin, Chun-Ho, Tsai, Dung-Sheng, Wei, Tzu-Chiao, Lien, Der-Hsien, Ke, Jr-Jian, Su, Chun-Hao, Sun, Ju-Yen, Liao, Ying-Chih, He, Jr-Hau
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible electronics will form the basis of many next-generation technologies, such as wearable devices, biomedical sensors, the Internet of things, and more. However, most flexible devices can bear strains of less than 300% as a result of stretching. In this work, we demonstrate a simple and low-cost paper-based photodetector array featuring superior deformability using printable ZnO nanowires, carbon electrodes, and origami-based techniques. With a folded Miura structure, the paper photodetector array can be oriented in four different directions via tessellated parallelograms to provide the device with excellent omnidirectional light harvesting capabilities. Additionally, we demonstrate that the device can be repeatedly stretched (up to 1000% strain), bent (bending angle ±30°), and twisted (up to 360°) without degrading performance as a result of the paper folding technique, which enables the ZnO nanowire layers to remain rigid even as the device is deformed. The origami-based strategy described herein suggests avenues for the development of next-generation deformable optoelectronic applications.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.7b04804