The combined effects of gulf stream-induced baroclinicity and upper-level vorticity on U.S. east coast extratropical cyclogenesis
The Atlantic Surface Cyclone Intensification Index (ASCII) is a forecast index that quantifies the strength of low-level baroclinicity in the coastal region of the Carolinas. It is based on the gradient between the coldest 24-h average air temperature at Cape Hatteras and Wilmington, North Carolina,...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2005-08, Vol.133 (8), p.2494-2501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Atlantic Surface Cyclone Intensification Index (ASCII) is a forecast index that quantifies the strength of low-level baroclinicity in the coastal region of the Carolinas. It is based on the gradient between the coldest 24-h average air temperature at Cape Hatteras and Wilmington, North Carolina, and the temperature at the western boundary of the Gulf Stream. The resulting prestorm baroclinic index (PSBI) is used to forecast the probability that a cyclone in the domain will exhibit rapid cyclogenesis. The initial ASCII study covered the years 1982–90. This dataset was recently expanded to cover the years 1991–2002, which doubled the number of cyclone events in the sample. These additional data provide similar position and slope of the linear regression fits to the previous values, and explain as much as 30% of the variance in cyclone deepening rate.
Despite operational value, the neglect of upper-tropospheric forcing as a predictor in the original ASCII formulation precludes explanation of a large fraction of the deepening rate variance. Here, a modified index is derived in which an approximate measure of upper-level forcing is included. The 1991–2002 cyclone events were separated into bins of “strongly forced,” “moderately forced,” and “weakly forced” based on the strength of the nearest upstream maximum of 500-mb absolute vorticity associated with the surface low. This separation method reduced the scatter and further isolated the contributions of surface forcing versus upper-level forcing on extratropical cyclogenesis. Results of the combined upper-level index and surface PSBI demonstrate that as much as 74% of the deepening rate variance can be explained for cases with stronger upper-level forcing. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/mwr2969.1 |