Compartmentalized Assembly of Motor Protein Reconstituted on Protocell Membrane toward Highly Efficient Photophosphorylation

Molecule assembly and functionalization of protocells have achieved a great success. However, the yield efficiency of photophosphorylation in the present cell-like systems is limited. Herein, inspired by natural photobacteria, we construct a protocell membrane reconstituting motor protein for highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-10, Vol.11 (10), p.10175-10183
Hauptverfasser: Xu, Youqian, Fei, Jinbo, Li, Guangle, Yuan, Tingting, Li, Junbai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecule assembly and functionalization of protocells have achieved a great success. However, the yield efficiency of photophosphorylation in the present cell-like systems is limited. Herein, inspired by natural photobacteria, we construct a protocell membrane reconstituting motor protein for highly efficient light-mediated adenosine triphosphate (ATP) synthesis through a layer-by-layer technique. The assembled membrane, compartmentally integrating photoacid generator, proton conductor, and ATP synthase, possesses excellent transparency, fast proton production, and quick proton transportation. Remarkably, these favorable features permit the formation of a large proton gradient in a confined region to drive ATP synthase to produce ATP with high efficiency (873 ATP s–1). It is the highest among the existing artificial photophosphorylation systems. Such a biomimetic system provides a bioenergy-supplying scenario for early photosynthetic life and holds promise in remotely controlled ATP-consumed biosensors, biocatalysts, and biodevices.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.7b04747