Determination of Polar Drug Residues in Sewage and Surface Water Applying Liquid Chromatography−Tandem Mass Spectrometry

A simple and rapid method is presented for the trace-level analysis of 10 polar pharmaceutical residues in various types of water samples from the aquatic environment. Using this method, the pharmaceuticals and several drug metabolites can be analyzed in drinking and surface waters and in wastewater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2004-11, Vol.76 (22), p.6548-6554
Hauptverfasser: Zuehlke, Sebastian, Duennbier, Uwe, Heberer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple and rapid method is presented for the trace-level analysis of 10 polar pharmaceutical residues in various types of water samples from the aquatic environment. Using this method, the pharmaceuticals and several drug metabolites can be analyzed in drinking and surface waters and in wastewater (treated and untreated sewage) at concentrations down to 0.01 μg/L. Samples are prepared by a simple in situ derivatization enabling the preconcentration of very polar metabolites by automated solid-phase extraction. The analytes were separated by liquid chromatography with tandem mass spectrometric detection and quantified by comparison with an internal standard. Limits of quantification were between 0.01 and 0.02 μg/L for three phenazone-type pharmaceuticals, six of their metabolites, and the antiepileptic drug carbamazepine. Except for dimethylaminophenazone, recoveries for all analytes were between 87 and 117% for raw and purified sewage, groundwater, and surface and drinking water. Investigations of some environmental samples revealed that sewage and surface water treatment causes a slight reduction of the concentrations of some analytes whereas other compounds were persistent during water treatment. Thus, some compounds were detected at the low-microgram per liter level in sewage effluents of wastewater treatment plants in Berlin (Germany) and were also found at high-nanogram per liter concentrations in Berlin surface water samples.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac049324m