Thiopurine S-methyltransferase (TPMT) Activity Is Better Determined by Biochemical Assay Versus Genotyping in the Jewish Population

Background Thiopurine S -methyltransferase (TPMT) is a key enzyme that deactivates thiopurines, into their inactive metabolite, 6-methylmercaptopurine. Intermediate and low TPMT activity may lead to leukopenia following thiopurine treatment. The aim of this study was to determine TPMT activity and T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digestive diseases and sciences 2014-06, Vol.59 (6), p.1207-1212
Hauptverfasser: Kasirer, Yair, Mevorach, Rephael, Renbaum, Paul, Algur, Nurit, Soiferman, Devora, Beeri, Rachel, Rachman, Yelana, Segel, Reeval, Turner, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Thiopurine S -methyltransferase (TPMT) is a key enzyme that deactivates thiopurines, into their inactive metabolite, 6-methylmercaptopurine. Intermediate and low TPMT activity may lead to leukopenia following thiopurine treatment. The aim of this study was to determine TPMT activity and TPMT alleles (genotype–phenotype correlation) in Jews, aiming to develop an evidence-based pharmacogenetic assay for this population. Methods TPMT activity was determined in 228 Jewish volunteers by high performance liquid chromatography. Common allelic variants in the Caucasian population [TPMT*2 (G238C), TPMT *3A (G460A and A719G), TPMT* 3B (G460A) and TPMT*3C (A719G)] were tested. Phenotype–genotype correlation was examined and discordant cases were fully sequenced to identify novel genetic variants. Results Mean TPMT activity was 15.4 ± 4 U/ml red blood cells (range 1–34). Intermediate activity was found in 33/228 (14 %) subjects and absent activity was found in one sample (0.4 %). Only eight individuals (3.5 % of the entire cohort and 24 % of those with intermediate/low activity) were identified as carriers of a TPMT genetic variant, all of whom had the TPMT*3A allele. Sequencing the entire TPMT coding region and splice junctions in the remainder of the discordant cases did not reveal any novel variants. Conclusion Genotyping TPMT in Jews yields a much lower rate of variants than identified in the general Caucasian population. We conclude that a biochemical assay to determine TPMT enzymatic activity should be performed in Jews before starting thiopurine treatment in order to identify low activity subjects.
ISSN:0163-2116
1573-2568
DOI:10.1007/s10620-013-3008-z