Immunogold Electron Microscopy Recognizes Prion Protein-Associated Particles Prepared from Scrapie-lnfected Mouse Brain

Previous studies have proposed that the disease isoform of prion protein (PrPSc) is particulate. Our purpose was to search by electron microscopy (EM) for particles in fractions of density gradients prepared from differentially centrifuged homogenates of scrapie-infected, normal, and null mouse brai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuropathology and experimental neurology 2004-01, Vol.63 (1), p.32-42
Hauptverfasser: Dourmashkin, R R, Oxford, J S, Bountiff, L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have proposed that the disease isoform of prion protein (PrPSc) is particulate. Our purpose was to search by electron microscopy (EM) for particles in fractions of density gradients prepared from differentially centrifuged homogenates of scrapie-infected, normal, and null mouse brain. Only mild detergents were used during the separation process. The low-density fractions derived from scrapie-infected brain were rich in PrP. Three morphologically distinct types of particle were observed. Type 1 particles, measuring similar to 6.8 nm in mean diameter, were found in abundance in the fractions of scrapie-infected brain at the peak PrP concentrations. They were often clumped and adherent to raft-like structures. Type 2 particles, in low-density fractions from normal brain, were similar to type 1 but were smaller, with the mean diameter measuring similar to 5.3 nm. Type 3 particles from null brain differed morphologically from types 1 and 2 and were not clumped. The low density of the particles indicated a lipid component, which was confirmed by lipid analysis. Immunogold EM using Mab 6H4 labeled a portion of the particles from scrapie mouse brain, but not those from normal or null brain. Dimensions of PrP suggest that the labeled particles carry a PrPSc dimer per particle.
ISSN:0022-3069