Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts

Caries is one of the most prevalent and costly infectious diseases affecting humans of all ages. It is initiated by cariogenic supragingival dental plaques forming on saliva-coated tooth surfaces, yet the etiology remains elusive. To determine which microbial populations may predispose a patient to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2018-02, Vol.75 (2), p.543-554
Hauptverfasser: He, Jinzhi, Tu, Qichao, Ge, Yichen, Qin, Yujia, Cui, Bomiao, Hu, Xiaoyu, Wang, Yuxia, Deng, Ye, Wang, Kun, Van Nostrand, Joy D., Li, Jiyao, Zhou, Jizhong, Li, Yan, Zhou, Xuedong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caries is one of the most prevalent and costly infectious diseases affecting humans of all ages. It is initiated by cariogenic supragingival dental plaques forming on saliva-coated tooth surfaces, yet the etiology remains elusive. To determine which microbial populations may predispose a patient to caries, we report here an in-depth and comprehensive view of the microbial community associated with supragingival dental plaque collected from the healthy teeth of caries patients and healthy adults. We found that microbial communities from caries patients had a higher evenness and inter-individual variations but simpler ecological networks compared to healthy controls despite the overall taxonomic structure being similar. Genera including Selenomonas, Treponema, Atopobium, and Bergeriella were distributed differently between the caries and healthy groups with disturbed co-occurrence patterns. In addition, caries and healthy subjects carried different Treponema, Atopobium, and Prevotella species. Moreover, distinct populations of 13 function genes involved in organic acid synthesis, glycan biosynthesis, complex carbohydrate degradation, amino acid synthesis and metabolism, purine and pyrimidine metabolism, isoprenoid biosynthesis, lipid metabolism, and co-factor biosynthesis were present in each of the healthy and caries groups. Our results suggested that the fundamental differences in dental plaque ecology partially explained the patients’ susceptibility to caries, and could be used for caries risk prediction in the future.
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-017-1056-1