Silk fibres grafted with 2-hydroxyethyl methacrylate (HEMA) and 4-hydroxybutyl acrylate (HBA) for biomedical applications

Silk fibroin may be chemically modified by grafting, with the purpose of improving its properties according to the desired function. In this study, silk fabrics from Bombyx mori silk fibres were grafted with 2-hydroxyethyl methacrylate (HEMA), as well as a binary mixture of HEMA and 4-hydroxybutyl a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2018-02, Vol.107 (Pt A), p.537-548
Hauptverfasser: Taddei, Paola, Di Foggia, Michele, Martinotti, Simona, Ranzato, Elia, Carmagnola, Irene, Chiono, Valeria, Tsukada, Masuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silk fibroin may be chemically modified by grafting, with the purpose of improving its properties according to the desired function. In this study, silk fabrics from Bombyx mori silk fibres were grafted with 2-hydroxyethyl methacrylate (HEMA), as well as a binary mixture of HEMA and 4-hydroxybutyl acrylate (HBA). The samples were then electrospun from trifluoroacetic acid and treated with aqueous methanol. The% weight gains ascribable to HEMA and HBA were successfully determined through Raman spectroscopy. PolyHEMA made the fibres more hydrophilic and hindered crystallization into β-sheet only upon electrospinning and treatment with aqueous methanol; the presence of the HBA component in the grafting mixture did not further decrease the ability of silk fibroin to rearrange into β-sheet, due to its low contents (below 5%) under the used experimental conditions. Fibrillation partially occurred in the grafted fabrics; the electrospun samples maintained their nanostructured morphology. The surface of the substrates under investigation was compatible with cell attachment and growth, which were higher for the nanofibres. Cell adhesion and proliferation may be modulated by varying the surface chemistry and topography of the fabrics; grafting improved the surface properties of silk fibroin for enhanced functional performance in view of biomedical applications.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2017.09.023