Linear dune accumulation chronologies from the southwest Kalahari, Namibia: challenges of reconstructing late Quaternary palaeoenvironments from aeolian landforms
The linear dunes of the southern Kalahari dunefield constitute one of the major palaeoenvironmental proxies in the region. The application of optically stimulated luminescence (OSL) dating since the1990s and advancements in the depth of sampling using augering equipment over the past few years have...
Gespeichert in:
Veröffentlicht in: | Quaternary science reviews 2008-09, Vol.27 (17), p.1667-1681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The linear dunes of the southern Kalahari dunefield constitute one of the major palaeoenvironmental proxies in the region. The application of optically stimulated luminescence (OSL) dating since the1990s and advancements in the depth of sampling using augering equipment over the past few years have permitted the reconstruction of linear dune accumulation chronostratigraphies for entire dune profiles from base to crest. These methods are applied to four dunes in the Mariental–Stampriet region of the southern Kalahari dunefield, sampled at predominantly 0.5
m intervals. Individual dunes record multiple phases of dune construction, but with only a few phases recorded consistently between two or more of the dunes. Results from the 48 OSL ages produced here extend the aeolian accumulation record for the southern Kalahari dunefield through the last three glacial–interglacial cycles with two ages from the early part of MIS6. A synthesis of all existing luminescence ages for the southern Kalahari reveals that the dunefield has been partially active throughout much of the past 120
ka. There are no clear clusters of ages within OSL age errors. This is in contrast to previous syntheses of ages for this region. In addition, these new data from Mariental–Stampriet dunes show that clusters in grouped dune OSL ages can be spuriously produced as a function of reducing the sampling frequency with depth within the dunes, from 0.5 to 1
mintervals. This has significant implications for previous conclusions regarding discrete phases of aeolian accumulation based on sampling at 1
m intervals and less vertically intensive sampling techniques. The total luminescence data set of 136 ages for the southern Kalahari implies that this dunefield has been close to the threshold of reactivation throughout much of the late Quaternary. |
---|---|
ISSN: | 0277-3791 1873-457X |
DOI: | 10.1016/j.quascirev.2008.06.008 |