Mechanics of Pharmaceutical Pellets—Constitutive Properties, Deformation, and Breakage Behavior
To ensure robust manufacturing of unit-based oral solid dosage forms with minimal structural imperfections and high mechanical reliability across subsequent processing unit operations (e.g., withstanding mechanical stresses during coating, optional axial compression, handling, packaging, storage, an...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 2018-02, Vol.107 (2), p.571-586 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To ensure robust manufacturing of unit-based oral solid dosage forms with minimal structural imperfections and high mechanical reliability across subsequent processing unit operations (e.g., withstanding mechanical stresses during coating, optional axial compression, handling, packaging, storage, and transport conditions), process design should include consideration of precise limits of accurate micro, macro, and bulk properties of the constituent pellets. This communication presents a comprehensive intricate database of micromechanical properties' and breakage probability distribution functions of pellets, illustrating the stiffening and strengthening effects of coatings and the softening and weakening effects of structural moisture. Further insights such as the (contact) history-dependent softening during decompression, strain hardening on repeated stressing, strength recovery by drying, and the fragmentation pattern by cracking are also presented. The contents herein are based on conveniently performable lab-scale diametrical compression measurements on model microcrystalline cellulose pellets—demonstrating feasibility of the approach and validity of the contribution. |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1016/j.xphs.2017.08.022 |