Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy
Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2017-11, Vol.12 (11), p.1064-1070 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1070 |
---|---|
container_issue | 11 |
container_start_page | 1064 |
container_title | Nature nanotechnology |
container_volume | 12 |
creator | Sung, Ji Ho Heo, Hoseok Si, Saerom Kim, Yong Hyeon Noh, Hyeong Rae Song, Kyung Kim, Juho Lee, Chang-Soo Seo, Seung-Young Kim, Dong-Hwi Kim, Hyoung Kug Yeom, Han Woong Kim, Tae-Hwan Choi, Si-Young Kim, Jun Sung Jo, Moon-Ho |
description | Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T′) and semiconducting (2H) MoTe
2
crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
Sequential heteroepitaxy of transition-metal dichalcogenide polymorphs with different electronic properties is used to build coplanar ultrathin circuitry with atomic-scale precision. |
doi_str_mv | 10.1038/nnano.2017.161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1940188923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961001593</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-3d93ff1f2110e8b22c10e4aaac0780e4d6f416e983f45099042fa3875b6208b63</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EEqWwMltiYUnrSy72iCpuUhELzJHrHFNXiR2cBMjGO_CGPAkuRQgx_f_w6ej8H0KnlMwo4WLunHJ-xggtZjSne2hCi1QknMts_7eL4hAddd2GkIxJlk6QWvi2Vk4F3EFjtXfVoHsfPt8_GuhVjbUNerB9GHEFxjqosHfYwGtSqxECvvMPwPCLVbj19dj40K6txmvoIXhoba_exmN0YFTdwclPTtHj1eXD4iZZ3l_fLi6WScuyvE94Jbkx1DBKCYgVYzpmqpTSpBCxVblJaQ5ScJNmREqSMqPinmyVMyJWOZ-i893dNvjnAbq-bGynoY7rwA9dSWVKqBCS8Yie_UM3fggufhepnBJCM7ml5juqa4N1TxD-UKTcKi-_lZdb5WVUzr8AOV52zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961001593</pqid></control><display><type>article</type><title>Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Sung, Ji Ho ; Heo, Hoseok ; Si, Saerom ; Kim, Yong Hyeon ; Noh, Hyeong Rae ; Song, Kyung ; Kim, Juho ; Lee, Chang-Soo ; Seo, Seung-Young ; Kim, Dong-Hwi ; Kim, Hyoung Kug ; Yeom, Han Woong ; Kim, Tae-Hwan ; Choi, Si-Young ; Kim, Jun Sung ; Jo, Moon-Ho</creator><creatorcontrib>Sung, Ji Ho ; Heo, Hoseok ; Si, Saerom ; Kim, Yong Hyeon ; Noh, Hyeong Rae ; Song, Kyung ; Kim, Juho ; Lee, Chang-Soo ; Seo, Seung-Young ; Kim, Dong-Hwi ; Kim, Hyoung Kug ; Yeom, Han Woong ; Kim, Tae-Hwan ; Choi, Si-Young ; Kim, Jun Sung ; Jo, Moon-Ho</creatorcontrib><description>Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T′) and semiconducting (2H) MoTe
2
crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
Sequential heteroepitaxy of transition-metal dichalcogenide polymorphs with different electronic properties is used to build coplanar ultrathin circuitry with atomic-scale precision.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2017.161</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/133 ; 142/126 ; 147/135 ; 147/137 ; 147/138 ; 147/143 ; 147/3 ; 639/301/119/1000/1018 ; 639/766/1130/2798 ; 639/925/357/1018 ; 639/925/927/1007 ; Circuits ; Crystals ; Integration ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Phase transitions ; Planes ; Polymorphism</subject><ispartof>Nature nanotechnology, 2017-11, Vol.12 (11), p.1064-1070</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p256t-3d93ff1f2110e8b22c10e4aaac0780e4d6f416e983f45099042fa3875b6208b63</cites><orcidid>0000-0002-3160-358X ; 0000-0001-5328-0913 ; 0000-0003-1648-142X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2017.161$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2017.161$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sung, Ji Ho</creatorcontrib><creatorcontrib>Heo, Hoseok</creatorcontrib><creatorcontrib>Si, Saerom</creatorcontrib><creatorcontrib>Kim, Yong Hyeon</creatorcontrib><creatorcontrib>Noh, Hyeong Rae</creatorcontrib><creatorcontrib>Song, Kyung</creatorcontrib><creatorcontrib>Kim, Juho</creatorcontrib><creatorcontrib>Lee, Chang-Soo</creatorcontrib><creatorcontrib>Seo, Seung-Young</creatorcontrib><creatorcontrib>Kim, Dong-Hwi</creatorcontrib><creatorcontrib>Kim, Hyoung Kug</creatorcontrib><creatorcontrib>Yeom, Han Woong</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Kim, Jun Sung</creatorcontrib><creatorcontrib>Jo, Moon-Ho</creatorcontrib><title>Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><description>Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T′) and semiconducting (2H) MoTe
2
crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
Sequential heteroepitaxy of transition-metal dichalcogenide polymorphs with different electronic properties is used to build coplanar ultrathin circuitry with atomic-scale precision.</description><subject>140/125</subject><subject>140/133</subject><subject>142/126</subject><subject>147/135</subject><subject>147/137</subject><subject>147/138</subject><subject>147/143</subject><subject>147/3</subject><subject>639/301/119/1000/1018</subject><subject>639/766/1130/2798</subject><subject>639/925/357/1018</subject><subject>639/925/927/1007</subject><subject>Circuits</subject><subject>Crystals</subject><subject>Integration</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Phase transitions</subject><subject>Planes</subject><subject>Polymorphism</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkLtOwzAUhi0EEqWwMltiYUnrSy72iCpuUhELzJHrHFNXiR2cBMjGO_CGPAkuRQgx_f_w6ej8H0KnlMwo4WLunHJ-xggtZjSne2hCi1QknMts_7eL4hAddd2GkIxJlk6QWvi2Vk4F3EFjtXfVoHsfPt8_GuhVjbUNerB9GHEFxjqosHfYwGtSqxECvvMPwPCLVbj19dj40K6txmvoIXhoba_exmN0YFTdwclPTtHj1eXD4iZZ3l_fLi6WScuyvE94Jbkx1DBKCYgVYzpmqpTSpBCxVblJaQ5ScJNmREqSMqPinmyVMyJWOZ-i893dNvjnAbq-bGynoY7rwA9dSWVKqBCS8Yie_UM3fggufhepnBJCM7ml5juqa4N1TxD-UKTcKi-_lZdb5WVUzr8AOV52zw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Sung, Ji Ho</creator><creator>Heo, Hoseok</creator><creator>Si, Saerom</creator><creator>Kim, Yong Hyeon</creator><creator>Noh, Hyeong Rae</creator><creator>Song, Kyung</creator><creator>Kim, Juho</creator><creator>Lee, Chang-Soo</creator><creator>Seo, Seung-Young</creator><creator>Kim, Dong-Hwi</creator><creator>Kim, Hyoung Kug</creator><creator>Yeom, Han Woong</creator><creator>Kim, Tae-Hwan</creator><creator>Choi, Si-Young</creator><creator>Kim, Jun Sung</creator><creator>Jo, Moon-Ho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3160-358X</orcidid><orcidid>https://orcid.org/0000-0001-5328-0913</orcidid><orcidid>https://orcid.org/0000-0003-1648-142X</orcidid></search><sort><creationdate>20171101</creationdate><title>Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy</title><author>Sung, Ji Ho ; Heo, Hoseok ; Si, Saerom ; Kim, Yong Hyeon ; Noh, Hyeong Rae ; Song, Kyung ; Kim, Juho ; Lee, Chang-Soo ; Seo, Seung-Young ; Kim, Dong-Hwi ; Kim, Hyoung Kug ; Yeom, Han Woong ; Kim, Tae-Hwan ; Choi, Si-Young ; Kim, Jun Sung ; Jo, Moon-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-3d93ff1f2110e8b22c10e4aaac0780e4d6f416e983f45099042fa3875b6208b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/125</topic><topic>140/133</topic><topic>142/126</topic><topic>147/135</topic><topic>147/137</topic><topic>147/138</topic><topic>147/143</topic><topic>147/3</topic><topic>639/301/119/1000/1018</topic><topic>639/766/1130/2798</topic><topic>639/925/357/1018</topic><topic>639/925/927/1007</topic><topic>Circuits</topic><topic>Crystals</topic><topic>Integration</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Phase transitions</topic><topic>Planes</topic><topic>Polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sung, Ji Ho</creatorcontrib><creatorcontrib>Heo, Hoseok</creatorcontrib><creatorcontrib>Si, Saerom</creatorcontrib><creatorcontrib>Kim, Yong Hyeon</creatorcontrib><creatorcontrib>Noh, Hyeong Rae</creatorcontrib><creatorcontrib>Song, Kyung</creatorcontrib><creatorcontrib>Kim, Juho</creatorcontrib><creatorcontrib>Lee, Chang-Soo</creatorcontrib><creatorcontrib>Seo, Seung-Young</creatorcontrib><creatorcontrib>Kim, Dong-Hwi</creatorcontrib><creatorcontrib>Kim, Hyoung Kug</creatorcontrib><creatorcontrib>Yeom, Han Woong</creatorcontrib><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Kim, Jun Sung</creatorcontrib><creatorcontrib>Jo, Moon-Ho</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sung, Ji Ho</au><au>Heo, Hoseok</au><au>Si, Saerom</au><au>Kim, Yong Hyeon</au><au>Noh, Hyeong Rae</au><au>Song, Kyung</au><au>Kim, Juho</au><au>Lee, Chang-Soo</au><au>Seo, Seung-Young</au><au>Kim, Dong-Hwi</au><au>Kim, Hyoung Kug</au><au>Yeom, Han Woong</au><au>Kim, Tae-Hwan</au><au>Choi, Si-Young</au><au>Kim, Jun Sung</au><au>Jo, Moon-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>12</volume><issue>11</issue><spage>1064</spage><epage>1070</epage><pages>1064-1070</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T′) and semiconducting (2H) MoTe
2
crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
Sequential heteroepitaxy of transition-metal dichalcogenide polymorphs with different electronic properties is used to build coplanar ultrathin circuitry with atomic-scale precision.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nnano.2017.161</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3160-358X</orcidid><orcidid>https://orcid.org/0000-0001-5328-0913</orcidid><orcidid>https://orcid.org/0000-0003-1648-142X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2017-11, Vol.12 (11), p.1064-1070 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_1940188923 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 140/125 140/133 142/126 147/135 147/137 147/138 147/143 147/3 639/301/119/1000/1018 639/766/1130/2798 639/925/357/1018 639/925/927/1007 Circuits Crystals Integration Materials Science Nanotechnology Nanotechnology and Microengineering Phase transitions Planes Polymorphism |
title | Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coplanar%20semiconductor%E2%80%93metal%20circuitry%20defined%20on%20few-layer%20MoTe2%20via%20polymorphic%20heteroepitaxy&rft.jtitle=Nature%20nanotechnology&rft.au=Sung,%20Ji%20Ho&rft.date=2017-11-01&rft.volume=12&rft.issue=11&rft.spage=1064&rft.epage=1070&rft.pages=1064-1070&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2017.161&rft_dat=%3Cproquest_sprin%3E1961001593%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961001593&rft_id=info:pmid/&rfr_iscdi=true |