Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy

Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2017-11, Vol.12 (11), p.1064-1070
Hauptverfasser: Sung, Ji Ho, Heo, Hoseok, Si, Saerom, Kim, Yong Hyeon, Noh, Hyeong Rae, Song, Kyung, Kim, Juho, Lee, Chang-Soo, Seo, Seung-Young, Kim, Dong-Hwi, Kim, Hyoung Kug, Yeom, Han Woong, Kim, Tae-Hwan, Choi, Si-Young, Kim, Jun Sung, Jo, Moon-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T′) and semiconducting (2H) MoTe 2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas. Sequential heteroepitaxy of transition-metal dichalcogenide polymorphs with different electronic properties is used to build coplanar ultrathin circuitry with atomic-scale precision.
ISSN:1748-3387
1748-3395
DOI:10.1038/nnano.2017.161