The Amyloid Stretch Hypothesis: Recruiting Proteins toward the Dark Side

A detailed understanding of the molecular events underlying the conversion and self-association of normally soluble proteins into amyloid fibrils is fundamental to the identification of therapeutic strategies to prevent or cure amyloid-related disorders. Recent investigations indicate that amyloid f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-11, Vol.102 (46), p.16672-16677
Hauptverfasser: Alexandra Esteras-Chopo, Serrano, Luis, de la Paz, Manuela López
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A detailed understanding of the molecular events underlying the conversion and self-association of normally soluble proteins into amyloid fibrils is fundamental to the identification of therapeutic strategies to prevent or cure amyloid-related disorders. Recent investigations indicate that amyloid fibril formation is not just a general property of the polypeptide backbone depending on external factors, but that it is strongly modulated by amino acid side chains. Here, we propose and address the validation of the premise that the amyloidogenicity of a protein is indeed localized in short protein stretches (amyloid stretch hypothesis). We demonstrate that the conversion of a soluble nonamyloidogenic protein into an amyloidogenic prone molecule can be triggered by a nondestabilizing six-residue amyloidogenic insertion in a particular structural environment. Interestingly enough, although the inserted amyloid sequences clearly cause the process, the protease-resistant core of the fiber also includes short adjacent sequences from the otherwise soluble globular domain. Thus, short amyloid stretches accessible for intermolecular interactions trigger the self-assembly reaction and pull the rest of the protein into the fibrillar aggregate. The reliable identification of such amyloidogenic stretches in proteins opens the possibility of using them as targets for the inhibition of the amyloid fibril formation process.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0505905102