Specific Epitopes of Domains II and III of Bacillus thuringiensis Cry1Ab Toxin Involved in the Sequential Interaction with Cadherin and Aminopeptidase-N Receptors in Manduca sexta
The Bacillus thuringiensis Cry toxins are specific to different insects. In Manduca sexta cadherin (Bt-R1) and aminopeptidase-N (APN) proteins are recognized as Cry1A receptors. Previous work showed that Cry1Ab binds to Bt-R1 promoting the formation of a pre-pore oligomer that binds to APN leading t...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2006-11, Vol.281 (45), p.34032-34039 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Bacillus thuringiensis Cry toxins are specific to different insects. In Manduca sexta cadherin (Bt-R1) and aminopeptidase-N (APN) proteins are recognized as Cry1A receptors. Previous work showed that Cry1Ab binds to Bt-R1 promoting the formation of a pre-pore oligomer that binds to APN leading to membrane insertion. In this work we characterized the binding epitopes involved in the sequential interaction of Cry1Ab with Bt-R1 and APN. A Cry1Ab immune M13 phage repertoire was constructed using antibody gene transcripts of bone marrow or spleen from a rabbit immunized with Cry1Ab. We identified antibodies that recognize domain II loop 3 (scFvL3-3) or β16–β22 (scFvM22) in domain III. Enzyme-linked immunosorbent assay and toxin overlay binding competition assays in the presence of scFvL3-3, scFvM22, or synthetic peptides showed that domain II loop 3 is an important epitope for interaction with Bt-R1 receptor, whereas domain III β16 is involved in the interaction with APN. Both scFvL3-3 and scFvM22 lowered the toxicity of Cry1Ab to M. sexta larvae indicating that interaction with both receptors is important for in vivo toxicity. scFvL3-3 and anti-loop2 scFv (scFv73) promoted the formation of the pre-pore oligomer in contrast to scFvM22. In addition, scFvL3-3 and scFv73 preferentially recognized the monomeric toxin rather than the pre-pore suggesting a conformational change in domain II loops upon oligomerization. These results indicate for the first time that both receptor molecules participate in Cry1Ab toxin action in vivo: first the monomeric toxin binds to Bt-R1 through loops 2 and 3 of domain II promoting the formation of the pre-pore inducing some structural changes, then the pre-pore interacts with APN through β-16 of domain III promoting membrane insertion and cell death. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M604721200 |