Probing Receptor Binding Activity of Interleukin-8 Dimer Using a Bisulfide Trap

Interleukin-8 (IL-8), a member of the chemokine superfamily, exists as both monomers and dimers, and mediates its function by binding to neutrophil CXCR1 and CXCR2 receptors that belong to the G protein-coupled receptor class. It is now well established that the monomer functions as a high-affinity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2006-06, Vol.45 (25), p.7882-7888
Hauptverfasser: Rajarathnam, K, Prado, G N, Fernando, H, Clark-Lewis, I, Navarro, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin-8 (IL-8), a member of the chemokine superfamily, exists as both monomers and dimers, and mediates its function by binding to neutrophil CXCR1 and CXCR2 receptors that belong to the G protein-coupled receptor class. It is now well established that the monomer functions as a high-affinity ligand, but the binding affinity of the dimer remains controversial The similar to 1000-fold difference between monomer-dimer equilibrium constant ( mu M) and receptor binding constant (nM) of IL-8 does not allow receptor-binding affinity measurements of the native IL-8 dimer. In this study, we overcame this roadblock by creating a "trapped" nondissociating dimer that contains a disulfide bond across the dimer interface at the 2-fold symmetry point. The NMR studies show that the structure of this trapped dimer is indistinguishable from the native dimer. The trapped dimer, compared to a trapped monomer, bound CXCR1 with similar to 70-fold and CXCR2 with similar to 20-fold lower affinities. Receptor binding involves two interactions, between the IL-8 N-loop and receptor N-domain residues, and between IL-8 N-terminal and receptor extracellular loop residues. In contrast to a trapped monomer that bound an isolated CXCR1 N-domain peptide with mu M affinity, the trapped dimer failed to show any binding, indicating that dimerization predominantly perturbs the binding of only the N-loop residues. These results demonstrate that only the monomer is a high-affinity ligand for both receptors, and also provide a structural basis for the lower binding affinity of the dimer.
ISSN:0006-2960
DOI:10.1021/bi0605944