Computerized Bone Age Estimation Using Deep Learning Based Program: Evaluation of the Accuracy and Efficiency
The purpose of this study is to evaluate the accuracy and efficiency of a new automatic software system for bone age assessment and to validate its feasibility in clinical practice. A Greulich-Pyle method-based deep-learning technique was used to develop the automatic software system for bone age de...
Gespeichert in:
Veröffentlicht in: | American journal of roentgenology (1976) 2017-12, Vol.209 (6), p.1374-1380 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study is to evaluate the accuracy and efficiency of a new automatic software system for bone age assessment and to validate its feasibility in clinical practice.
A Greulich-Pyle method-based deep-learning technique was used to develop the automatic software system for bone age determination. Using this software, bone age was estimated from left-hand radiographs of 200 patients (3-17 years old) using first-rank bone age (software only), computer-assisted bone age (two radiologists with software assistance), and Greulich-Pyle atlas-assisted bone age (two radiologists with Greulich-Pyle atlas assistance only). The reference bone age was determined by the consensus of two experienced radiologists.
First-rank bone ages determined by the automatic software system showed a 69.5% concordance rate and significant correlations with the reference bone age (r = 0.992; p < 0.001). Concordance rates increased with the use of the automatic software system for both reviewer 1 (63.0% for Greulich-Pyle atlas-assisted bone age vs 72.5% for computer-assisted bone age) and reviewer 2 (49.5% for Greulich-Pyle atlas-assisted bone age vs 57.5% for computer-assisted bone age). Reading times were reduced by 18.0% and 40.0% for reviewers 1 and 2, respectively.
Automatic software system showed reliably accurate bone age estimations and appeared to enhance efficiency by reducing reading times without compromising the diagnostic accuracy. |
---|---|
ISSN: | 0361-803X 1546-3141 |
DOI: | 10.2214/AJR.17.18224 |