Ring chromosomes: from formation to clinical potential

Ring chromosomes (RCs) are circular DNA molecules, which occur rarely in eukaryotic nuclear genomes. Lilian Vaughan Morgan first described them in the fruit fly. Human embryos very seldom have RCs, about 1:50,000. Carriers of RCs may have varying degrees of symptoms, from healthy phenotype to seriou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protoplasma 2018-03, Vol.255 (2), p.439-449
Hauptverfasser: Pristyazhnyuk, Inna E., Menzorov, Aleksei G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ring chromosomes (RCs) are circular DNA molecules, which occur rarely in eukaryotic nuclear genomes. Lilian Vaughan Morgan first described them in the fruit fly. Human embryos very seldom have RCs, about 1:50,000. Carriers of RCs may have varying degrees of symptoms, from healthy phenotype to serious pathologies in physical and intellectual development. Many authors describe common symptoms of RC presence: short stature and some developmental delay that could be described as a “ring chromosome syndrome.” As a rule, RCs arise de novo through the end-joining of two DNA double-strand breaks, telomere-subtelomere junction, or inv dup del rearrangement in both meiosis and mitosis. There are family cases of RC inheritance. The presence of RCs causes numerous secondary chromosome rearrangements in vivo and in vitro. RCs can change their size, become lost, or increase their copy number and cause additional deletions, duplication, and translocations, affecting both RCs and other chromosomes. In this review, we examine RC inheritance, instability, mechanisms of formation, and potential clinical applications of artificially created RCs for large-scale chromosome rearrangement treatment.
ISSN:0033-183X
1615-6102
DOI:10.1007/s00709-017-1165-1