Application of Visible/Near‐Infrared Spectroscopy in the Prediction of Azodicarbonamide in Wheat Flour
Azodicarbonamide is wildly used in flour industry as a flour gluten fortifier in many countries, but it was proved by some researches to be dangerous or unhealthy for people and not suitable to be added in flour. Applying a rapid, convenient, and noninvasive technique in food analytical procedure fo...
Gespeichert in:
Veröffentlicht in: | Journal of food science 2017-10, Vol.82 (10), p.2516-2525 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Azodicarbonamide is wildly used in flour industry as a flour gluten fortifier in many countries, but it was proved by some researches to be dangerous or unhealthy for people and not suitable to be added in flour. Applying a rapid, convenient, and noninvasive technique in food analytical procedure for the safety inspection has become an urgent need. This paper used Vis/NIR reflectance spectroscopy analysis technology, which is based on the physical property analysis to predict the concentration of azodicarbonamide in flour. Spectral data in range from 400 to 2498 nm were obtained by scanning 101 samples which were prepared using the stepwise dilution method. Furthermore, the combination of leave‐one‐out cross‐validation and Mahalanobis distance method was used to eliminate abnormal spectral data, and correlation coefficient method was used to choose characteristic wavebands. Partial least squares, back propagation neural network, and radial basis function were used to establish prediction model separately. By comparing the prediction results between 3 models, the radial basis function model has the best prediction results whose correlation coefficients (R), root mean square error of prediction (RMSEP), and ratio of performance to deviation (RPD) reached 0.99996, 0.5467, and 116.5858, respectively.
Practical Application
Azodicarbonamide has been banned or limited in many countries. This paper proposes a method to predict azodicarbonamide concentrate in wheat flour, which will be used for a rapid, convenient, and noninvasive detection device. |
---|---|
ISSN: | 0022-1147 1750-3841 |
DOI: | 10.1111/1750-3841.13859 |