A comparison of relative proton stopping power measurements across patient size using dual- and single-energy CT
To evaluate the accuracy and precision across phantom size of a dual-energy computed tomography (DECT) technique used to calculate relative proton stopping power (SPR) in tissue-simulating materials and a silicone implant relative to conventional single-energy CT (SECT). A 32 cm lateral diameter (CI...
Gespeichert in:
Veröffentlicht in: | Acta oncologica 2017-11, Vol.56 (11), p.1465-1471 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To evaluate the accuracy and precision across phantom size of a dual-energy computed tomography (DECT) technique used to calculate relative proton stopping power (SPR) in tissue-simulating materials and a silicone implant relative to conventional single-energy CT (SECT).
A 32 cm lateral diameter (CIRS model 062M, Norfolk, Virginia) electron density phantom containing inserts which simulated the chemical composition of eight tissues in a solid-water background was scanned using SECT and DECT. A liquid water insert was included to confirm CT number accuracy. All materials were also placed in four water tanks, ranging from 15 to 45 cm in lateral width and scanned using DECT and SECT. A silicone breast implant was scanned in the same water phantoms. SPR values were calculated based on commercial software (syngo CT Dual Energy, Siemens Healthcare GmbH) and compared to reference values derived from proton beam measurements. Accuracy and precision were quantified across phantom size using percent error and standard deviation. Graphical and regression analysis were used to determine whether SECT or DECT was superior in estimating SPR across phantom size.
Both DECT and SECT SPR data resulted in good agreement with the reference values. Percent error was ±3% for both DECT and SECT in all materials except lung and dense bone. The coefficient of variation (CV) across materials and phantom sizes was 1.12% for SECT and 0.96% for DECT. Material-specific regression and graphical analysis did not reveal size dependence for either technique but did show reduced systematic bias with DECT for dense bone and liver. Mean percent error in SPR for the implant was reduced from 11.46% for SECT to 0.49% for DECT.
We demonstrate the superior ability of DECT to mitigate systematic bias in bones and liver and estimate SPR in a silicone breast implant. |
---|---|
ISSN: | 0284-186X 1651-226X |
DOI: | 10.1080/0284186x.2017.1372625 |