Long-Lasting Impairment of Associative Learning Is Correlated with a Dysfunction of N-Methyl-d-aspartate-Extracellular Signaling-Regulated Kinase Signaling in Mice after Withdrawal from Repeated Administration of Phencyclidine

In humans, the administration of phencyclidine causes schizophrenic-like symptoms that persist for several weeks after withdrawal from phencyclidine use. We demonstrated here that mice pretreated with phencyclidine (10 mg/kg/day s.c. for 14 days) showed an enduring impairment of associative in a Pav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2005-12, Vol.68 (6), p.1765-1774
Hauptverfasser: Enomoto, Takeshi, Noda, Yukihiro, Mouri, Akihiro, Shin, Eun-Joo, Wang, Dayong, Murai, Rina, Hotta, Kazuo, Furukawa, Hiroshi, Nitta, Atsumi, Kim, Hyoung-Chun, Nabeshima, Toshitaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In humans, the administration of phencyclidine causes schizophrenic-like symptoms that persist for several weeks after withdrawal from phencyclidine use. We demonstrated here that mice pretreated with phencyclidine (10 mg/kg/day s.c. for 14 days) showed an enduring impairment of associative in a Pavlovian fear conditioning 8 days after cessation of phencyclidine treatment. Extracellular signaling-regulated kinase (ERK) was transiently activated in the amygdalae and hippocampi of saline-treated mice after conditioning. In the phencyclidine-treated mice, the basal level of ERK activation was elevated in the hippocampus, whereas the activation was impaired in the amygdala and hippocampus after conditioning. Exogenous N-methyl-d-aspartate (NMDA), glycine, and spermidine-induced ERK activation was not observed in slices of hippocampus and amygdala prepared from phencyclidine-treated mice. Repeated olanzapine (3 mg/kg/day p.o. for 7 days), but not haloperidol (1 mg/kg/day p.o. for 7 days), treatment reversed the impairment of associative learning and of fear conditioning-induced ERK activation in repeated phencyclidine-treated mice. Our findings suggest an involvement of abnormal ERK signaling via NMDA receptors in repeated phencyclidine treatment-induced cognitive dysfunction. Furthermore, our phencyclidine-treated mice would be a useful model for studying the effect of antipsychotics on cognitive dysfunction in schizophrenia.
ISSN:0026-895X
1521-0111
DOI:10.1124/mol.105.011304