Melanocortin receptor subtypes are expressed on cells in the oligodendroglial lineage and signal ACTH protection
ACTH, a melanocortin peptide used to treat multiple sclerosis (MS) relapses, acts by stimulating adrenal corticosteroid (CS) production via melanocortin receptor 2 (MC2R), but it may also exert a therapeutic effect independent of CS by stimulating other melanocortin receptors (MCR) distributed in ma...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 2018-03, Vol.96 (3), p.427-435 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ACTH, a melanocortin peptide used to treat multiple sclerosis (MS) relapses, acts by stimulating adrenal corticosteroid (CS) production via melanocortin receptor 2 (MC2R), but it may also exert a therapeutic effect independent of CS by stimulating other melanocortin receptors (MCR) distributed in many tissues, including the brain. We reported that oligodendroglia (OL) and oligodendroglial precursor cells (OPC) express MC4R, and that ACTH 1‐39 protects OL and OPC in vitro from cell death induced by mechanisms likely involved in white matter damage in MS. This study investigates expression of MC1R, MC2R, MC3R and MC5R in OL and MC4R in OPC using immunocytochemistry with MCR subtype specific antibodies. OL express surface MC1R, MC3R and MC5R, in addition to MC4R. To investigate whether these receptors are functional, we asked if signaling through MCR is involved in ACTH protection of cultured rat OL from apoptosis (staurosporine), or cell death induced by excitotoxicity (glutamate), reactive oxygen species (ROS), or an inflammatory mediator (quinolinic acid). Like ACTH 1‐39, MCR subtype specific agonists for MC1R, MC3R, MC4R and MC5R all protected OL from these insults. Conversely, antagonists for MC3R and MC4R blocked ACTH protection of OL. We then investigated the role of MC4R, as a prototype MCR, in protection and proliferation of OPC; MC4R agonists protected OPC and increased their proliferation, while antagonists blocked these effects. Our results demonstrate that MCR on OL and OPC are functional and activate signaling pathways that protect against mechanisms involved in OL damage in MS, suggesting potential beneficial effects in neurologic diseases.
We report for the first time that oligodendroglia express melanocortin receptors MC1R, MC3R and MC5R, in addition to MC4R. These receptors signal protection by ACTH and increase progenitor proliferation. Our findings have potential for identifying agents that decrease excitotoxic, apoptotic and inflammatory damage in multiple sclerosis and other neurodegenerative diseases. |
---|---|
ISSN: | 0360-4012 1097-4547 |
DOI: | 10.1002/jnr.24141 |