Optimizing combination of vascular endothelial growth factor and mesenchymal stem cells on ectopic bone formation in SCID mice

Introduction: Insufficient blood supply may limit bone regeneration in bone defects. Vascular endothelial growth factor (VEGF) promotes angiogenesis by increasing endothelial migration. This outcome, however, could depend on time of application. Sheep mesenchymal stem cells (MSCs) in severe combined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2017-12, Vol.105 (12), p.3326-3332
Hauptverfasser: Dreyer, Chris H., Kjærgaard, Kristian, Ditzel, Nicholas, Jørgensen, Niklas R., Overgaard, Søren, Ding, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3332
container_issue 12
container_start_page 3326
container_title Journal of biomedical materials research. Part A
container_volume 105
creator Dreyer, Chris H.
Kjærgaard, Kristian
Ditzel, Nicholas
Jørgensen, Niklas R.
Overgaard, Søren
Ding, Ming
description Introduction: Insufficient blood supply may limit bone regeneration in bone defects. Vascular endothelial growth factor (VEGF) promotes angiogenesis by increasing endothelial migration. This outcome, however, could depend on time of application. Sheep mesenchymal stem cells (MSCs) in severe combined immunodeficient (SCID) mice were used in this study to evaluate optimal time points for VEGF stimulation to increase bone formation. Methods: Twenty‐eight SCID (NOD.CB17‐Prkdcscid/J) mice had hydroxyapatite granules seeded with 5 × 105 MSCs inserted subcutaneous. Pellets released VEGF on days 1–7, days 1–14, days 1–21, days 1–42, days 7–14, and days 21–42. After 8 weeks, the implant‐bone‐blocks were harvested, paraffin embedded, sectioned, and stained with both hematoxylin and eosin (HE) and immunohistochemistry for human vimentin (hVim) staining. Blood samples were collected for determination of bone‐related biomarkers in serum. Results: The groups with 5 × 105 MSCs and VEGF stimulation on days 1–14 and days 1–21 showed more bone formation when compared to the control group of 5 × 105 MSCs alone (p 
doi_str_mv 10.1002/jbm.a.36195
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1936620716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956048577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3975-440bc68b891a8e410c7909aacdb0db9b697e8b6547efd2e513ec3069b6b0cc4e3</originalsourceid><addsrcrecordid>eNp90bFP3DAUBnALtQJKmdgrS10qVTnsJHbikV4LBYEYCrNlOy-cT7F9tZOiY-jfXh-hHTowvSe9nz496UPohJIFJaQ8XWu3UIuKU8H20CFlrCxqwdmb3V6LoioFP0DvUlpnzAkr99FB2baN4Fwcot-3m9E6-2T9AzbBaevVaIPHoce_VDLToCIG34VxBYNVA36I4XFc4V6ZMUSsfIcdJPBmtXX5mkZw2MAwJJwzIJuNNVgHD7gP0c3R1uMfy8uv2FkD79HbXg0Jjl_mEbo__3a3_F5c315cLs-uC1OJhhV1TbThrW4FVS3UlJhGEKGU6TTptNBcNNBqzuoG-q4ERiswFeH5oIkxNVRH6NOcu4nh5wRplM6m3aPKQ5iSpKLivCQN5Zl-_I-uwxR9_i4rxkndsqbJ6vOsTAwpRejlJlqn4lZSIne1yFyLVPK5lqw_vGRO2kH3z_7tIYNyBo92gO1rWfLqy83ZnPoHF7yaAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956048577</pqid></control><display><type>article</type><title>Optimizing combination of vascular endothelial growth factor and mesenchymal stem cells on ectopic bone formation in SCID mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dreyer, Chris H. ; Kjærgaard, Kristian ; Ditzel, Nicholas ; Jørgensen, Niklas R. ; Overgaard, Søren ; Ding, Ming</creator><creatorcontrib>Dreyer, Chris H. ; Kjærgaard, Kristian ; Ditzel, Nicholas ; Jørgensen, Niklas R. ; Overgaard, Søren ; Ding, Ming</creatorcontrib><description>Introduction: Insufficient blood supply may limit bone regeneration in bone defects. Vascular endothelial growth factor (VEGF) promotes angiogenesis by increasing endothelial migration. This outcome, however, could depend on time of application. Sheep mesenchymal stem cells (MSCs) in severe combined immunodeficient (SCID) mice were used in this study to evaluate optimal time points for VEGF stimulation to increase bone formation. Methods: Twenty‐eight SCID (NOD.CB17‐Prkdcscid/J) mice had hydroxyapatite granules seeded with 5 × 105 MSCs inserted subcutaneous. Pellets released VEGF on days 1–7, days 1–14, days 1–21, days 1–42, days 7–14, and days 21–42. After 8 weeks, the implant‐bone‐blocks were harvested, paraffin embedded, sectioned, and stained with both hematoxylin and eosin (HE) and immunohistochemistry for human vimentin (hVim) staining. Blood samples were collected for determination of bone‐related biomarkers in serum. Results: The groups with 5 × 105 MSCs and VEGF stimulation on days 1–14 and days 1–21 showed more bone formation when compared to the control group of 5 × 105 MSCs alone (p &lt; 0.01). Serum biomarkers had no significant values. The hVim staining confirmed the ovine origin of the observed ectopic bone formation. Conclusion: Optimal bone formation of MSCs was reached when stimulating with VEGF during the first 14 or 21 days after surgery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3326–3332, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36195</identifier><identifier>PMID: 28879669</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; Animals ; Biomarkers ; Biomarkers - blood ; Biomedical materials ; Blood ; bone formation ; Bone growth ; Bone implants ; Cells, Cultured ; Durapatite - chemistry ; Female ; Humans ; Hydroxyapatite ; Immunodeficiency ; Immunohistochemistry ; Mesenchymal Stem Cell Transplantation - methods ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchyme ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Optimization ; Ossification (ectopic) ; Osteogenesis ; Osteogenesis - drug effects ; Paraffin ; Regeneration ; Regeneration (physiology) ; severe combined immunodeficient mice ; Sheep ; Staining ; Stem cell transplantation ; Stem cells ; Stimulation ; Surgery ; Surgical implants ; tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - administration &amp; dosage ; Vascular Endothelial Growth Factor A - therapeutic use ; Vimentin</subject><ispartof>Journal of biomedical materials research. Part A, 2017-12, Vol.105 (12), p.3326-3332</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3975-440bc68b891a8e410c7909aacdb0db9b697e8b6547efd2e513ec3069b6b0cc4e3</citedby><cites>FETCH-LOGICAL-c3975-440bc68b891a8e410c7909aacdb0db9b697e8b6547efd2e513ec3069b6b0cc4e3</cites><orcidid>0000-0002-3762-0559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36195$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36195$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28879669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dreyer, Chris H.</creatorcontrib><creatorcontrib>Kjærgaard, Kristian</creatorcontrib><creatorcontrib>Ditzel, Nicholas</creatorcontrib><creatorcontrib>Jørgensen, Niklas R.</creatorcontrib><creatorcontrib>Overgaard, Søren</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><title>Optimizing combination of vascular endothelial growth factor and mesenchymal stem cells on ectopic bone formation in SCID mice</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Introduction: Insufficient blood supply may limit bone regeneration in bone defects. Vascular endothelial growth factor (VEGF) promotes angiogenesis by increasing endothelial migration. This outcome, however, could depend on time of application. Sheep mesenchymal stem cells (MSCs) in severe combined immunodeficient (SCID) mice were used in this study to evaluate optimal time points for VEGF stimulation to increase bone formation. Methods: Twenty‐eight SCID (NOD.CB17‐Prkdcscid/J) mice had hydroxyapatite granules seeded with 5 × 105 MSCs inserted subcutaneous. Pellets released VEGF on days 1–7, days 1–14, days 1–21, days 1–42, days 7–14, and days 21–42. After 8 weeks, the implant‐bone‐blocks were harvested, paraffin embedded, sectioned, and stained with both hematoxylin and eosin (HE) and immunohistochemistry for human vimentin (hVim) staining. Blood samples were collected for determination of bone‐related biomarkers in serum. Results: The groups with 5 × 105 MSCs and VEGF stimulation on days 1–14 and days 1–21 showed more bone formation when compared to the control group of 5 × 105 MSCs alone (p &lt; 0.01). Serum biomarkers had no significant values. The hVim staining confirmed the ovine origin of the observed ectopic bone formation. Conclusion: Optimal bone formation of MSCs was reached when stimulating with VEGF during the first 14 or 21 days after surgery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3326–3332, 2017.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>bone formation</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Cells, Cultured</subject><subject>Durapatite - chemistry</subject><subject>Female</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Immunodeficiency</subject><subject>Immunohistochemistry</subject><subject>Mesenchymal Stem Cell Transplantation - methods</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Optimization</subject><subject>Ossification (ectopic)</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Paraffin</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>severe combined immunodeficient mice</subject><subject>Sheep</subject><subject>Staining</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stimulation</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - administration &amp; dosage</subject><subject>Vascular Endothelial Growth Factor A - therapeutic use</subject><subject>Vimentin</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90bFP3DAUBnALtQJKmdgrS10qVTnsJHbikV4LBYEYCrNlOy-cT7F9tZOiY-jfXh-hHTowvSe9nz496UPohJIFJaQ8XWu3UIuKU8H20CFlrCxqwdmb3V6LoioFP0DvUlpnzAkr99FB2baN4Fwcot-3m9E6-2T9AzbBaevVaIPHoce_VDLToCIG34VxBYNVA36I4XFc4V6ZMUSsfIcdJPBmtXX5mkZw2MAwJJwzIJuNNVgHD7gP0c3R1uMfy8uv2FkD79HbXg0Jjl_mEbo__3a3_F5c315cLs-uC1OJhhV1TbThrW4FVS3UlJhGEKGU6TTptNBcNNBqzuoG-q4ERiswFeH5oIkxNVRH6NOcu4nh5wRplM6m3aPKQ5iSpKLivCQN5Zl-_I-uwxR9_i4rxkndsqbJ6vOsTAwpRejlJlqn4lZSIne1yFyLVPK5lqw_vGRO2kH3z_7tIYNyBo92gO1rWfLqy83ZnPoHF7yaAw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Dreyer, Chris H.</creator><creator>Kjærgaard, Kristian</creator><creator>Ditzel, Nicholas</creator><creator>Jørgensen, Niklas R.</creator><creator>Overgaard, Søren</creator><creator>Ding, Ming</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3762-0559</orcidid></search><sort><creationdate>201712</creationdate><title>Optimizing combination of vascular endothelial growth factor and mesenchymal stem cells on ectopic bone formation in SCID mice</title><author>Dreyer, Chris H. ; Kjærgaard, Kristian ; Ditzel, Nicholas ; Jørgensen, Niklas R. ; Overgaard, Søren ; Ding, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3975-440bc68b891a8e410c7909aacdb0db9b697e8b6547efd2e513ec3069b6b0cc4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>bone formation</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Cells, Cultured</topic><topic>Durapatite - chemistry</topic><topic>Female</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Immunodeficiency</topic><topic>Immunohistochemistry</topic><topic>Mesenchymal Stem Cell Transplantation - methods</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Optimization</topic><topic>Ossification (ectopic)</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Paraffin</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>severe combined immunodeficient mice</topic><topic>Sheep</topic><topic>Staining</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stimulation</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - administration &amp; dosage</topic><topic>Vascular Endothelial Growth Factor A - therapeutic use</topic><topic>Vimentin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dreyer, Chris H.</creatorcontrib><creatorcontrib>Kjærgaard, Kristian</creatorcontrib><creatorcontrib>Ditzel, Nicholas</creatorcontrib><creatorcontrib>Jørgensen, Niklas R.</creatorcontrib><creatorcontrib>Overgaard, Søren</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dreyer, Chris H.</au><au>Kjærgaard, Kristian</au><au>Ditzel, Nicholas</au><au>Jørgensen, Niklas R.</au><au>Overgaard, Søren</au><au>Ding, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing combination of vascular endothelial growth factor and mesenchymal stem cells on ectopic bone formation in SCID mice</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-12</date><risdate>2017</risdate><volume>105</volume><issue>12</issue><spage>3326</spage><epage>3332</epage><pages>3326-3332</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Introduction: Insufficient blood supply may limit bone regeneration in bone defects. Vascular endothelial growth factor (VEGF) promotes angiogenesis by increasing endothelial migration. This outcome, however, could depend on time of application. Sheep mesenchymal stem cells (MSCs) in severe combined immunodeficient (SCID) mice were used in this study to evaluate optimal time points for VEGF stimulation to increase bone formation. Methods: Twenty‐eight SCID (NOD.CB17‐Prkdcscid/J) mice had hydroxyapatite granules seeded with 5 × 105 MSCs inserted subcutaneous. Pellets released VEGF on days 1–7, days 1–14, days 1–21, days 1–42, days 7–14, and days 21–42. After 8 weeks, the implant‐bone‐blocks were harvested, paraffin embedded, sectioned, and stained with both hematoxylin and eosin (HE) and immunohistochemistry for human vimentin (hVim) staining. Blood samples were collected for determination of bone‐related biomarkers in serum. Results: The groups with 5 × 105 MSCs and VEGF stimulation on days 1–14 and days 1–21 showed more bone formation when compared to the control group of 5 × 105 MSCs alone (p &lt; 0.01). Serum biomarkers had no significant values. The hVim staining confirmed the ovine origin of the observed ectopic bone formation. Conclusion: Optimal bone formation of MSCs was reached when stimulating with VEGF during the first 14 or 21 days after surgery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3326–3332, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28879669</pmid><doi>10.1002/jbm.a.36195</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3762-0559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2017-12, Vol.105 (12), p.3326-3332
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1936620716
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Angiogenesis
Animals
Biomarkers
Biomarkers - blood
Biomedical materials
Blood
bone formation
Bone growth
Bone implants
Cells, Cultured
Durapatite - chemistry
Female
Humans
Hydroxyapatite
Immunodeficiency
Immunohistochemistry
Mesenchymal Stem Cell Transplantation - methods
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchyme
Mice
Mice, Inbred NOD
Mice, SCID
Optimization
Ossification (ectopic)
Osteogenesis
Osteogenesis - drug effects
Paraffin
Regeneration
Regeneration (physiology)
severe combined immunodeficient mice
Sheep
Staining
Stem cell transplantation
Stem cells
Stimulation
Surgery
Surgical implants
tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - administration & dosage
Vascular Endothelial Growth Factor A - therapeutic use
Vimentin
title Optimizing combination of vascular endothelial growth factor and mesenchymal stem cells on ectopic bone formation in SCID mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20combination%20of%20vascular%20endothelial%20growth%20factor%20and%20mesenchymal%20stem%20cells%20on%20ectopic%20bone%20formation%20in%20SCID%20mice&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Dreyer,%20Chris%20H.&rft.date=2017-12&rft.volume=105&rft.issue=12&rft.spage=3326&rft.epage=3332&rft.pages=3326-3332&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36195&rft_dat=%3Cproquest_cross%3E1956048577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956048577&rft_id=info:pmid/28879669&rfr_iscdi=true