Electropermeabilization by uni- or bipolar nanosecond electric pulses: The impact of extracellular conductivity
Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation....
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2018-02, Vol.119, p.10-19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation. CHO-K1 cells bathed in high (16.1mS/cm; HCS) or low (1.8mS/cm; LCS) conductivity solutions were exposed to either one unipolar (300-ns) or two opposite polarity (300+300-ns; bipolar) nsEP (4–40kV/cm) with increasing interpulse intervals (0.1–50μs). Time-lapse YO-PRO-1 (YP) uptake revealed enhanced membrane permeabilization in LCS compared to HCS at all tested voltages. The time-dependence of bipolar cancellation was similar in both solutions, using either identical (22kV/cm) or isoeffective nsEP treatments (12 and 32kV/cm for LCS and HCS, respectively). However, cancellation was significantly stronger in LCS when the bipolar nsEP had no, or very short ( |
---|---|
ISSN: | 1567-5394 1878-562X |
DOI: | 10.1016/j.bioelechem.2017.08.005 |