Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties

Conspectus Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research 2017-09, Vol.50 (9), p.2353-2361
Hauptverfasser: Coutiño-Gonzalez, Eduardo, Baekelant, Wouter, Steele, Julian A, Kim, Cheol Woong, Roeffaers, Maarten B. J, Hofkens, Johan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conspectus Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemical properties (molecule-like discrete energy levels, for example), make them very attractive for a wide variety of applied research fields, from biotechnology and the environmental sciences to fundamental chemistry and physics. Apart from useful catalytic properties, silver clusters (Agn, n < 10) were recently shown to also exhibit exceptional optical properties. The optical properties and performance of Ag-CLs offer strong potential for their integration into appealing micro­(nano)-optoelectronic devices. To date, however, the rational design and directed synthesis of Ag-CLs with specific functionalities has remained elusive. The inability for rational design stems mainly from a lack of understanding of their novel atomic-scale phenomena. This is because accurately studying silver cluster systems at such a scale is hindered by the perturbations introduced during exposure to various experimental probes. For instance, silver possesses a strong tendency to cluster and form ever-larger Ag aggregates while probed with high-energy electron beams and X-ray irradiation. As well, there exists a need to provide a stabilizing environment for which Ag n δ+ clusters can persist, setting up a complex interacting guest–host system, as isolated silver clusters are confined within a suitable hosting medium. Fundamental research into Ag n δ+ formation mechanisms and their important optical properties is paramount to establishing truly informed synthesis protocols. Over recent years, we have developed several protocols for the ship-in-a-bottle synthesis of highly luminescent Ag-CLs within the microporous interiors of zeolite frameworks. This approach has yielded materials displaying a wide variety of optical properties, offering a spectrum of possible applications, from nano­(micro)­photonic devices to smart luminescent labels and sensors. The versatility of the Ag–zeolite multicomponent system is directly related to the intrinsic and complex tunability of the system as a whole. There are several key zeolite parameters that confer properties to the clusters, namely, the framework Si/Al ratio, choice of counterbalancing ions, silver loading, and zeolite topology, and cannot be ove
ISSN:0001-4842
1520-4898
DOI:10.1021/acs.accounts.7b00295