Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis
Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initia...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2006-09, Vol.281 (39), p.29011-29021 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29021 |
---|---|
container_issue | 39 |
container_start_page | 29011 |
container_title | The Journal of biological chemistry |
container_volume | 281 |
creator | Shenton, Daniel Smirnova, Julia B. Selley, Julian N. Carroll, Kathleen Hubbard, Simon J. Pavitt, Graham D. Ashe, Mark P. Grant, Chris M. |
description | Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress. |
doi_str_mv | 10.1074/jbc.M601545200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19361614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819339948</els_id><sourcerecordid>19361614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpaLZJrz0WHUpv3mr04bWPJaRpYENCkkJvQpbHXQXZciV52_z7quxCTp3LMLzPDMNDyHtga2Ab-fmps-ubmoGSijP2iqyANaISCn68JivGOFQtV80peZvSEyslW3hDTqFuZCt4uyL2yofOePoYzZS8yS5MZbrHNIcpYaI50Ns_ri_BHulDjpgSvR5nYzNdCkJvFp_d7JFucY8-0TDQuxgyuok-PE95h8mlc3IyGJ_w3bGfke9fLx8vvlXb26vriy_byiolcsVtLSV2VvENs6xuNqCAS-i4bSwTPTCjoDWSy15Cwzs51MJiSY1UdVN3gzgjnw535xh-LZiyHl2y6L2ZMCxJQytqqEEWcH0AbQwpRRz0HN1o4rMGpv9p1UWrftFaFj4cLy_diP0LfvRYgI8HYOd-7n67iLpzwe5w1LwBLVrNWwZQsOaAFVW4dxh1sg4ni31ZsVn3wf3vhb8ZPJJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19361614</pqid></control><display><type>article</type><title>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shenton, Daniel ; Smirnova, Julia B. ; Selley, Julian N. ; Carroll, Kathleen ; Hubbard, Simon J. ; Pavitt, Graham D. ; Ashe, Mark P. ; Grant, Chris M.</creator><creatorcontrib>Shenton, Daniel ; Smirnova, Julia B. ; Selley, Julian N. ; Carroll, Kathleen ; Hubbard, Simon J. ; Pavitt, Graham D. ; Ashe, Mark P. ; Grant, Chris M.</creatorcontrib><description>Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M601545200</identifier><identifier>PMID: 16849329</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Eukaryotic Initiation Factor-2 - metabolism ; Hydrogen Peroxide - pharmacology ; Mutation ; Oligonucleotide Array Sequence Analysis ; Oxidative Stress ; Phosphorylation ; Polyribosomes - metabolism ; Protein Biosynthesis ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism</subject><ispartof>The Journal of biological chemistry, 2006-09, Vol.281 (39), p.29011-29021</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</citedby><cites>FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16849329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shenton, Daniel</creatorcontrib><creatorcontrib>Smirnova, Julia B.</creatorcontrib><creatorcontrib>Selley, Julian N.</creatorcontrib><creatorcontrib>Carroll, Kathleen</creatorcontrib><creatorcontrib>Hubbard, Simon J.</creatorcontrib><creatorcontrib>Pavitt, Graham D.</creatorcontrib><creatorcontrib>Ashe, Mark P.</creatorcontrib><creatorcontrib>Grant, Chris M.</creatorcontrib><title>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.</description><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Mutation</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oxidative Stress</subject><subject>Phosphorylation</subject><subject>Polyribosomes - metabolism</subject><subject>Protein Biosynthesis</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1r3DAQhkVpaLZJrz0WHUpv3mr04bWPJaRpYENCkkJvQpbHXQXZciV52_z7quxCTp3LMLzPDMNDyHtga2Ab-fmps-ubmoGSijP2iqyANaISCn68JivGOFQtV80peZvSEyslW3hDTqFuZCt4uyL2yofOePoYzZS8yS5MZbrHNIcpYaI50Ns_ri_BHulDjpgSvR5nYzNdCkJvFp_d7JFucY8-0TDQuxgyuok-PE95h8mlc3IyGJ_w3bGfke9fLx8vvlXb26vriy_byiolcsVtLSV2VvENs6xuNqCAS-i4bSwTPTCjoDWSy15Cwzs51MJiSY1UdVN3gzgjnw535xh-LZiyHl2y6L2ZMCxJQytqqEEWcH0AbQwpRRz0HN1o4rMGpv9p1UWrftFaFj4cLy_diP0LfvRYgI8HYOd-7n67iLpzwe5w1LwBLVrNWwZQsOaAFVW4dxh1sg4ni31ZsVn3wf3vhb8ZPJJM</recordid><startdate>20060929</startdate><enddate>20060929</enddate><creator>Shenton, Daniel</creator><creator>Smirnova, Julia B.</creator><creator>Selley, Julian N.</creator><creator>Carroll, Kathleen</creator><creator>Hubbard, Simon J.</creator><creator>Pavitt, Graham D.</creator><creator>Ashe, Mark P.</creator><creator>Grant, Chris M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20060929</creationdate><title>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</title><author>Shenton, Daniel ; Smirnova, Julia B. ; Selley, Julian N. ; Carroll, Kathleen ; Hubbard, Simon J. ; Pavitt, Graham D. ; Ashe, Mark P. ; Grant, Chris M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Mutation</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oxidative Stress</topic><topic>Phosphorylation</topic><topic>Polyribosomes - metabolism</topic><topic>Protein Biosynthesis</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shenton, Daniel</creatorcontrib><creatorcontrib>Smirnova, Julia B.</creatorcontrib><creatorcontrib>Selley, Julian N.</creatorcontrib><creatorcontrib>Carroll, Kathleen</creatorcontrib><creatorcontrib>Hubbard, Simon J.</creatorcontrib><creatorcontrib>Pavitt, Graham D.</creatorcontrib><creatorcontrib>Ashe, Mark P.</creatorcontrib><creatorcontrib>Grant, Chris M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shenton, Daniel</au><au>Smirnova, Julia B.</au><au>Selley, Julian N.</au><au>Carroll, Kathleen</au><au>Hubbard, Simon J.</au><au>Pavitt, Graham D.</au><au>Ashe, Mark P.</au><au>Grant, Chris M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-09-29</date><risdate>2006</risdate><volume>281</volume><issue>39</issue><spage>29011</spage><epage>29021</epage><pages>29011-29021</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16849329</pmid><doi>10.1074/jbc.M601545200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2006-09, Vol.281 (39), p.29011-29021 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_19361614 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Eukaryotic Initiation Factor-2 - metabolism Hydrogen Peroxide - pharmacology Mutation Oligonucleotide Array Sequence Analysis Oxidative Stress Phosphorylation Polyribosomes - metabolism Protein Biosynthesis RNA, Messenger - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism |
title | Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Translational%20Responses%20to%20Oxidative%20Stress%20Impact%20upon%20Multiple%20Levels%20of%20Protein%20Synthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Shenton,%20Daniel&rft.date=2006-09-29&rft.volume=281&rft.issue=39&rft.spage=29011&rft.epage=29021&rft.pages=29011-29021&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M601545200&rft_dat=%3Cproquest_cross%3E19361614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19361614&rft_id=info:pmid/16849329&rft_els_id=S0021925819339948&rfr_iscdi=true |