Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis

Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-09, Vol.281 (39), p.29011-29021
Hauptverfasser: Shenton, Daniel, Smirnova, Julia B., Selley, Julian N., Carroll, Kathleen, Hubbard, Simon J., Pavitt, Graham D., Ashe, Mark P., Grant, Chris M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29021
container_issue 39
container_start_page 29011
container_title The Journal of biological chemistry
container_volume 281
creator Shenton, Daniel
Smirnova, Julia B.
Selley, Julian N.
Carroll, Kathleen
Hubbard, Simon J.
Pavitt, Graham D.
Ashe, Mark P.
Grant, Chris M.
description Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.
doi_str_mv 10.1074/jbc.M601545200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19361614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819339948</els_id><sourcerecordid>19361614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpaLZJrz0WHUpv3mr04bWPJaRpYENCkkJvQpbHXQXZciV52_z7quxCTp3LMLzPDMNDyHtga2Ab-fmps-ubmoGSijP2iqyANaISCn68JivGOFQtV80peZvSEyslW3hDTqFuZCt4uyL2yofOePoYzZS8yS5MZbrHNIcpYaI50Ns_ri_BHulDjpgSvR5nYzNdCkJvFp_d7JFucY8-0TDQuxgyuok-PE95h8mlc3IyGJ_w3bGfke9fLx8vvlXb26vriy_byiolcsVtLSV2VvENs6xuNqCAS-i4bSwTPTCjoDWSy15Cwzs51MJiSY1UdVN3gzgjnw535xh-LZiyHl2y6L2ZMCxJQytqqEEWcH0AbQwpRRz0HN1o4rMGpv9p1UWrftFaFj4cLy_diP0LfvRYgI8HYOd-7n67iLpzwe5w1LwBLVrNWwZQsOaAFVW4dxh1sg4ni31ZsVn3wf3vhb8ZPJJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19361614</pqid></control><display><type>article</type><title>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shenton, Daniel ; Smirnova, Julia B. ; Selley, Julian N. ; Carroll, Kathleen ; Hubbard, Simon J. ; Pavitt, Graham D. ; Ashe, Mark P. ; Grant, Chris M.</creator><creatorcontrib>Shenton, Daniel ; Smirnova, Julia B. ; Selley, Julian N. ; Carroll, Kathleen ; Hubbard, Simon J. ; Pavitt, Graham D. ; Ashe, Mark P. ; Grant, Chris M.</creatorcontrib><description>Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M601545200</identifier><identifier>PMID: 16849329</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Eukaryotic Initiation Factor-2 - metabolism ; Hydrogen Peroxide - pharmacology ; Mutation ; Oligonucleotide Array Sequence Analysis ; Oxidative Stress ; Phosphorylation ; Polyribosomes - metabolism ; Protein Biosynthesis ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism</subject><ispartof>The Journal of biological chemistry, 2006-09, Vol.281 (39), p.29011-29021</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</citedby><cites>FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16849329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shenton, Daniel</creatorcontrib><creatorcontrib>Smirnova, Julia B.</creatorcontrib><creatorcontrib>Selley, Julian N.</creatorcontrib><creatorcontrib>Carroll, Kathleen</creatorcontrib><creatorcontrib>Hubbard, Simon J.</creatorcontrib><creatorcontrib>Pavitt, Graham D.</creatorcontrib><creatorcontrib>Ashe, Mark P.</creatorcontrib><creatorcontrib>Grant, Chris M.</creatorcontrib><title>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.</description><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Mutation</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oxidative Stress</subject><subject>Phosphorylation</subject><subject>Polyribosomes - metabolism</subject><subject>Protein Biosynthesis</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1r3DAQhkVpaLZJrz0WHUpv3mr04bWPJaRpYENCkkJvQpbHXQXZciV52_z7quxCTp3LMLzPDMNDyHtga2Ab-fmps-ubmoGSijP2iqyANaISCn68JivGOFQtV80peZvSEyslW3hDTqFuZCt4uyL2yofOePoYzZS8yS5MZbrHNIcpYaI50Ns_ri_BHulDjpgSvR5nYzNdCkJvFp_d7JFucY8-0TDQuxgyuok-PE95h8mlc3IyGJ_w3bGfke9fLx8vvlXb26vriy_byiolcsVtLSV2VvENs6xuNqCAS-i4bSwTPTCjoDWSy15Cwzs51MJiSY1UdVN3gzgjnw535xh-LZiyHl2y6L2ZMCxJQytqqEEWcH0AbQwpRRz0HN1o4rMGpv9p1UWrftFaFj4cLy_diP0LfvRYgI8HYOd-7n67iLpzwe5w1LwBLVrNWwZQsOaAFVW4dxh1sg4ni31ZsVn3wf3vhb8ZPJJM</recordid><startdate>20060929</startdate><enddate>20060929</enddate><creator>Shenton, Daniel</creator><creator>Smirnova, Julia B.</creator><creator>Selley, Julian N.</creator><creator>Carroll, Kathleen</creator><creator>Hubbard, Simon J.</creator><creator>Pavitt, Graham D.</creator><creator>Ashe, Mark P.</creator><creator>Grant, Chris M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>20060929</creationdate><title>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</title><author>Shenton, Daniel ; Smirnova, Julia B. ; Selley, Julian N. ; Carroll, Kathleen ; Hubbard, Simon J. ; Pavitt, Graham D. ; Ashe, Mark P. ; Grant, Chris M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-2c644ebc5270c0687151241b2c8c03d10a519a424d4182b4f63ceb2ca45686bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Mutation</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oxidative Stress</topic><topic>Phosphorylation</topic><topic>Polyribosomes - metabolism</topic><topic>Protein Biosynthesis</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shenton, Daniel</creatorcontrib><creatorcontrib>Smirnova, Julia B.</creatorcontrib><creatorcontrib>Selley, Julian N.</creatorcontrib><creatorcontrib>Carroll, Kathleen</creatorcontrib><creatorcontrib>Hubbard, Simon J.</creatorcontrib><creatorcontrib>Pavitt, Graham D.</creatorcontrib><creatorcontrib>Ashe, Mark P.</creatorcontrib><creatorcontrib>Grant, Chris M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shenton, Daniel</au><au>Smirnova, Julia B.</au><au>Selley, Julian N.</au><au>Carroll, Kathleen</au><au>Hubbard, Simon J.</au><au>Pavitt, Graham D.</au><au>Ashe, Mark P.</au><au>Grant, Chris M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2006-09-29</date><risdate>2006</risdate><volume>281</volume><issue>39</issue><spage>29011</spage><epage>29021</epage><pages>29011-29021</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16849329</pmid><doi>10.1074/jbc.M601545200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2006-09, Vol.281 (39), p.29011-29021
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_19361614
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Eukaryotic Initiation Factor-2 - metabolism
Hydrogen Peroxide - pharmacology
Mutation
Oligonucleotide Array Sequence Analysis
Oxidative Stress
Phosphorylation
Polyribosomes - metabolism
Protein Biosynthesis
RNA, Messenger - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
title Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Translational%20Responses%20to%20Oxidative%20Stress%20Impact%20upon%20Multiple%20Levels%20of%20Protein%20Synthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Shenton,%20Daniel&rft.date=2006-09-29&rft.volume=281&rft.issue=39&rft.spage=29011&rft.epage=29021&rft.pages=29011-29021&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M601545200&rft_dat=%3Cproquest_cross%3E19361614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19361614&rft_id=info:pmid/16849329&rft_els_id=S0021925819339948&rfr_iscdi=true