Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis

Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-09, Vol.281 (39), p.29011-29021
Hauptverfasser: Shenton, Daniel, Smirnova, Julia B., Selley, Julian N., Carroll, Kathleen, Hubbard, Simon J., Pavitt, Graham D., Ashe, Mark P., Grant, Chris M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Global inhibition of protein synthesis is a common response to stress conditions. We have analyzed the regulation of protein synthesis in response to oxidative stress induced by exposure to H2O2 in the yeast Saccharomyces cerevisiae. Our data show that H2O2 causes an inhibition of translation initiation dependent on the Gcn2 protein kinase, which phosphorylates the α-subunit of eukaryotic initiation factor-2. Additionally, our data indicate that translation is regulated in a Gcn2-independent manner because protein synthesis was still inhibited in response to H2O2 in a gcn2 mutant. Polysome analysis indicated that H2O2 causes a slower rate of ribosomal runoff, consistent with an inhibitory effect on translation elongation or termination. Furthermore, analysis of ribosomal transit times indicated that oxidative stress increases the average mRNA transit time, confirming a post-initiation inhibition of translation. Using microarray analysis of polysome- and monosome-associated mRNA pools, we demonstrate that certain mRNAs, including mRNAs encoding stress protective molecules, increase in association with ribosomes following H2O2 stress. For some candidate mRNAs, we show that a low concentration of H2O2 results in increased protein production. In contrast, a high concentration of H2O2 promotes polyribosome association but does not necessarily lead to increased protein production. We suggest that these mRNAs may represent an mRNA store that could become rapidly activated following relief of the stress condition. In summary, oxidative stress elicits complex translational reprogramming that is fundamental for adaptation to the stress.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M601545200