The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway

Winter conditions with seasonally frozen soils may have profound effects on soil structure and erodibility, and consequently for runoff and erosion. Such effects on aggregate stability are poorly documented for Nordic winter conditions. The purpose of this study was to quantify the effect of variabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catena (Giessen) 2006-11, Vol.67 (3), p.175-182
Hauptverfasser: Kvaernoe, Sigrun Hjalmarsdottir, Oeygarden, Lillian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Winter conditions with seasonally frozen soils may have profound effects on soil structure and erodibility, and consequently for runoff and erosion. Such effects on aggregate stability are poorly documented for Nordic winter conditions. The purpose of this study was to quantify the effect of variable freeze–thaw cycles and soil moisture conditions on aggregate stability of three soils (silt, structured clay loam—clay A and levelled silty clay loam—clay B), which are representative of two erosion prone areas in southeastern Norway. A second purpose was to compare aggregate stabilities measured by the Norwegian standard procedure (rainfall simulator) and the more widely used wet-sieving procedure. Surface soil was sampled in autumn. Field moist soil was sieved into the fraction 1–4 mm and packed into cylinders. The water content of the soil was adjusted, corresponding to matric potentials of − 0.75, − 2 and − 10 kPa. The soil cores were insulated and covered, and subjected to 0, 1, 3 or 6 freeze–thaw cycles: freezing at − 15 °C for 24 h and thawing at 9 °C for 48 h. Aggregate stability was measured in a rainfall simulator (all soils) and a wet-sieving apparatus (silt and clay B). The rainfall stability of silt was found to be significantly lower than of clay A and clay B. Clay A and clay B had similar rainfall stabilities, even though it was expected that the artificially levelled clay B would have lower stability. Freezing and thawing decreased the rainfall stability of all soils, but the effect was more severe on the silt soil. There was no evident effect of water content on the stability, probably due to experimental limitations. The same effects were observed for wet-sieved soil, but the wet-sieving resulted in less aggregate breakdown than the rainfall simulator. Rainfall impact seemed to be more detrimental than wet-sieving on more unstable soil, that is, on silt soil and soil subjected to many freeze–thaw cycles. Such conditions are expected to occur frequently during field conditions in unstable winters.
ISSN:0341-8162
1872-6887
DOI:10.1016/j.catena.2006.03.011