High-Affinity Interactions of Beryllium(2+) with Phosphatidylserine Result in a Cross-Linking Effect Reducing Surface Recognition of the Lipid
Beryllium has multiple industrial applications, but its manufacture is associated with a serious occupational risk of developing chronic inflammation in the lungs known as berylliosis, or chronic beryllium disease. Although the Be2+-induced abnormal immune responses have recently been linked to a sp...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2017-10, Vol.56 (40), p.5457-5470 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beryllium has multiple industrial applications, but its manufacture is associated with a serious occupational risk of developing chronic inflammation in the lungs known as berylliosis, or chronic beryllium disease. Although the Be2+-induced abnormal immune responses have recently been linked to a specific MHC-II allele, the nature of long-lasting granulomas is not fully understood. Here we show that Be2+ binds with a micromolar affinity to phosphatidylserine (PS), the major surface marker of apoptotic cells. Isothermal titration calorimetry indicates that, like that of Ca2+, binding of Be2+ to PS liposomes is largely entropically driven, likely by massive desolvation. Be2+ exerts a compacting effect on PS monolayers, suggesting cross-linking through coordination by both phosphates and carboxyls in multiple configurations, which were visualized in molecular dynamics simulations. Electrostatic modification of PS membranes by Be2+ includes complete neutralization of surface charges at ∼30 μM, accompanied by an increase in the boundary dipole potential. The data suggest that Be2+ can displace Ca2+ from the surface of PS, and being coordinated in a tight shell of four oxygens, it can mask headgroups from Ca2+-mediated recognition by PS receptors. Indeed, 48 μM Be2+ added to IC-21 cultured macrophages specifically suppresses binding and engulfment of PS-coated silica beads or aged erythrocytes. We propose that Be2+ adsorption at the surface of apoptotic cells may potentially prevent normal phagocytosis, thus causing accumulation of secondary necrotic foci and the resulting chronic inflammation. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/acs.biochem.7b00644 |