Modeling Soil Organic Matter Dynamics Under IntensiveCropping Systems on the Huang-Huai-Hai Plain of China
A modified CQESTR model, a simple yet useful model frequently used for estimating carbon sequestration in agricultural soils, was developed and applied to evaluate the effects of intensive cropping on soil organic matter (SOM) dynamics and mineralization as well as to estimate carbon dioxide emissio...
Gespeichert in:
Veröffentlicht in: | Pedosphere 2006-08, Vol.16 (4), p.409-419 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A modified CQESTR model, a simple yet useful model frequently used for estimating carbon sequestration in agricultural soils, was developed and applied to evaluate the effects of intensive cropping on soil organic matter (SOM) dynamics and mineralization as well as to estimate carbon dioxide emission from agricultural soils at seven sites on the Huang-Huai-Hai Plain of China. The model was modified using site-specific parameters from short- and mid-term buried organic material experiments at four stages of biomass decomposition. The predicted SOM results were validated using independent data from seven long-term (10- to 20-year) soil fertility experiments in this region. Regression analysis on 1151 pairs of predicted and measured SOM data had an r super(2) of 0.91 (P < 0.01). Therefore, the modified model was able to predict the mineralization of crop residues, organic amendments, and native SOM. Linear regression also showed that SOM mineralization rate (MR) in the plow layer increased by 0.22% when annual crop yield increased by 1 t ha super(-1) (P less than or equal to 0.01), suggesting an improvement in SOM quality. Apparently, not only did the annual soil respiration efflux merely reflect the intensity of soil organism and plant metabolism, but also the SOM MR in the plow layer. These results suggested that the modified model was simple yet valuable in predicting SOM trends at a single agricultural field and could be a powerful tool for estimating C-storage potential and reconstructing C storage on the Huang-Huai-Hai Plain of China. |
---|---|
ISSN: | 1002-0160 |