Problems with the retrieval of glacier net surface balance from SAR imagery

There are relatively few comparisons between synthetic aperture radar (SAR) observations and glacier mass-balance measurements. More typically, SAR has been deployed to identify changes in the end-of-summer snowline and other facies boundaries. In this paper, we analyze the geophysical processes aff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of glaciology 2005, Vol.42, p.209-216
Hauptverfasser: Brown, Ian A., Klingbjer, Per, Dean, Andy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are relatively few comparisons between synthetic aperture radar (SAR) observations and glacier mass-balance measurements. More typically, SAR has been deployed to identify changes in the end-of-summer snowline and other facies boundaries. In this paper, we analyze the geophysical processes affecting SAR amplitude data over two Arctic glacier systems in northern Scandinavia to assess the potential of SAR observations for the retrieval of surface balance parameters. Using a backscatter model and in situ data, we identify the controls on SAR imagery in terms of mass-balance measurement and discuss the glaciological parameters which can reasonably be derived from multi-temporal SAR data. Our results show that amplitude SAR imagery, in the absence of in situ measurements, is not capable of providing meaningful mass-balance data. We show that backscatter from temperate glaciers is affected primarily by snow grain-size and density, and therefore processes such as firnification or depth-hoar formation can complicate the analysis of imagery. We conclude that SAR imagery over temperate glaciers can provide valuable proxy information but not direct mass-balance terms.
ISSN:0260-3055
1727-5644
DOI:10.3189/172756405781812736