Time Series Analysis of Energy Production and Associated Landscape Fragmentation in the Eagle Ford Shale Play

Spatio-temporal trends in infrastructure footprints, energy production, and landscape alteration were assessed for the Eagle Ford Shale of Texas. The period of analysis was over four 2-year periods (2006–2014). Analyses used high-resolution imagery, as well as pipeline data to map EF infrastructure....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental management (New York) 2017-11, Vol.60 (5), p.852-866
Hauptverfasser: Pierre, Jon Paul, Young, Michael H., Wolaver, Brad D., Andrews, John R., Breton, Caroline L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatio-temporal trends in infrastructure footprints, energy production, and landscape alteration were assessed for the Eagle Ford Shale of Texas. The period of analysis was over four 2-year periods (2006–2014). Analyses used high-resolution imagery, as well as pipeline data to map EF infrastructure. Landscape conditions from 2006 were used as baseline. Results indicate that infrastructure footprints varied from 94.5 km 2 in 2008 to 225.0 km 2 in 2014. By 2014, decreased land-use intensities (ratio of land alteration to energy production) were noted play-wide. Core-area alteration by period was highest (3331.6 km 2 ) in 2008 at the onset of play development, and increased from 582.3 to 3913.9 km 2 by 2014, though substantial revegetation of localized core areas was observed throughout the study (i.e., alteration improved in some areas and worsened in others). Land-use intensity in the eastern portion of the play was consistently lower than that in the western portion, while core alteration remained relatively constant east to west. Land alteration from pipeline construction was ~65 km 2 for all time periods, except in 2010 when alteration was recorded at 47 km 2 . Percent of total alteration from well-pad construction increased from 27.3% in 2008 to 71.5% in 2014. The average number of wells per pad across all 27 counties increased from 1.15 to 1.7. This study presents a framework for mapping landscape alteration from oil and gas infrastructure development. However, the framework could be applied to other energy development programs, such as wind or solar fields, or any other regional infrastructure development program. Graphical abstract Landscape alteration caused by hydrocarbon pipeline installation in Val Verde County, Texas
ISSN:0364-152X
1432-1009
DOI:10.1007/s00267-017-0925-1