MicroRNA-182 Promotes Lipoprotein Lipase Expression and Atherogenesisby Targeting Histone Deacetylase 9 in Apolipoprotein E-Knockout Mice

Background:Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation Journal 2017/12/25, Vol.82(1), pp.28-38
Hauptverfasser: Cheng, Hai-Peng, Gong, Duo, Zhao, Zhen-Wang, He, Ping-Ping, Yu, Xiao-Hua, Ye, Qiong, Huang, Chong, Zhang, Xin, Chen, Ling-Yan, Xie, Wei, Zhang, Min, Li, Liang, Xia, Xiao-Dan, Ouyang, Xin-Ping, Tan, Yu-Lin, Wang, Zong-bao, Tian, Guo-Ping, Zheng, Xi-Long, Yin, Wei-Dong, Tang, Chao-Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background:Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and atherogenesis.Methods and Results:Using bioinformatics analyses and a dual-luciferase reporter assay, we identified histone deacetylase 9 (HDAC9) as a target gene of miR-182. Moreover, miR-182 upregulated LPL expression by directly targetingHDAC9in THP-1 macrophages. Hematoxylin-eosin (H&E), Oil Red O and Masson’s trichrome staining showed that apolipoprotein E (ApoE)-knockout (KO) mice treated with miR-182 exhibited more severe atherosclerotic plaques. Treatment with miR-182 increased CD68 and LPL expression in atherosclerotic lesions in ApoE-KO mice, as indicated by double immunofluorescence staining in the aortic sinus. Increased miR-182-induced increases in LPL expression in ApoE-KO mice was confirmed by real-time quantitative polymerase chain reaction and western blotting analyses. Treatment with miR-182 also increased plasma concentrations of proinflammatory cytokines and lipids in ApoE-KO mice.Conclusions:The results of the present study suggest that miR-182 upregulates LPL expression, promotes lipid accumulation in atherosclerotic lesions, and increases proinflammatory cytokine secretion, likely through targetingHDAC9, leading to an acceleration of atherogenesis in ApoE-KO mice.
ISSN:1346-9843
1347-4820
1347-4820
DOI:10.1253/circj.CJ-16-1165