The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet, Lottia digitalis
Much of our understanding of the thermal physiology of intertidal organisms comes from experiments with animals acclimated under constant conditions and exposed to a single heat stress. In nature, however, the thermal environment is more complex. Aerial exposure and the unpredictable nature of therm...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2017-09, Vol.220 (Pt 17), p.3072-3083 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Much of our understanding of the thermal physiology of intertidal organisms comes from experiments with animals acclimated under constant conditions and exposed to a single heat stress. In nature, however, the thermal environment is more complex. Aerial exposure and the unpredictable nature of thermal stress during low tides may be critical factors in defining the thermal physiology of intertidal organisms. In the fingered limpet,
, we investigated whether upper temperature tolerance and thermal sensitivity were influenced by the pattern of fluctuation with which thermal stress was applied. Specifically, we examined whether there was a differential response (measured as cardiac performance) to repeated heat stress of a constant and predictable magnitude compared with heat stress applied in a stochastic and unpredictable nature. We also investigated differences in cellular metabolism and damage following immersion for insights into biochemical mechanisms of tolerance. Upper temperature tolerance increased with aerial exposure, but no significant differences were found between predictable treatments of varying magnitudes (13°C versus 24°C versus 32°C). Significant differences in thermal tolerance were found between unpredictable trials with different heating patterns. There were no significant differences among treatments in basal citrate synthase activity, glycogen content, oxidative stress or antioxidants. Our results suggest that aerial exposure and recent thermal history, paired with relief from high low-tide temperatures, are important factors modulating the capacity of limpets to deal with thermal stress. |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.159020 |