miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage

Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2017-10, Vol.144 (19), p.3562-3577
Hauptverfasser: Bluhm, Björn, Ehlen, Harald W A, Holzer, Tatjana, Georgieva, Veronika S, Heilig, Juliane, Pitzler, Lena, Etich, Julia, Bortecen, Toman, Frie, Christian, Probst, Kristina, Niehoff, Anja, Belluoccio, Daniele, Van den Bergen, Jocelyn, Brachvogel, Bent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular responses, but so far only limited data are available on miRNAs that regulate cartilage development. Here, we characterize a miRNA that promotes the biosynthesis of a key component in the RAF/MEK/ERK pathway in cartilage. Specifically, by transcriptome profiling we identified miR-322 to be upregulated during chondrocyte differentiation. Among the various miR-322 target genes in the RAF/MEK/ERK pathway, only was identified as a regulated target in chondrocytes. Surprisingly, an increased concentration of miR-322 stabilizes mRNA to raise protein levels and dampen ERK1/2 phosphorylation, while cartilage-specific inactivation of miR322 in mice linked the loss of miR-322 to decreased MEK1 levels and to increased RAF/MEK/ERK pathway activation. Such mice died perinatally due to tracheal growth restriction and respiratory failure. Hence, a single miRNA can stimulate the production of an inhibitory component of a central signaling pathway to impair cartilage development.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.148429