Hydrothermal Synthesis of Highly Dispersed Co3O4 Nanoparticles on Biomass-Derived Nitrogen-Doped Hierarchically Porous Carbon Networks as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
Developing high-performance bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of vital importance in energy storage and conversion systems. Herein, we demonstrate a facile hydrothermal synthesis of highly dispersed Co3O4 nanoparticles (NPs) anch...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-09, Vol.9 (36), p.30662-30669 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing high-performance bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of vital importance in energy storage and conversion systems. Herein, we demonstrate a facile hydrothermal synthesis of highly dispersed Co3O4 nanoparticles (NPs) anchored on cattle-bone-derived nitrogen-doped hierarchically porous carbon (NHPC) networks as an efficient ORR/OER bifunctional electrocatalyst. The as-prepared Co3O4/NHPC exhibits a remarkable catalytic activity toward both ORR (outperforming the commercial Pt/C) and OER (comparable with the commercial RuO2 catalyst) in alkaline electrolyte. The superior bifunctional catalytic activity can be ascribed to the large specific surface area (1070 m2 g–1), the well-defined hierarchically porous structure, and the high content of nitrogen doping (4.93 wt %), which synergistically contribute to the homogeneous dispersion of Co3O4 NPs and the enhanced mass transport capability. Moreover, the primary Zn–air battery using the Co3O4/NHPC cathode demonstrates a superior performance with an open-circuit potential of 1.39 V, a specific capacity of 795 mA h gZn –1 (at 2 mA cm–2), and a peak power density of 80 mW cm–2. This work delivers a new insight into the design and synthesis of high-performance bifunctional nonprecious metal electrocatalysts for Zn–air battery and other electrochemical devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b08533 |