Graphite-Based Nanocomposite Electrochemical Sensor for Multiplex Detection of Adenine, Guanine, Thymine, and Cytosine: A Biomedical Prospect for Studying DNA Damage
Guanine (G), adenine (A), thymine (T), and cytosine (C) are the four basic constituents of DNA. Studies on DNA composition have focused especially on DNA damage and genotoxicity. However, the development of a rapid, simple, and multiplex method for the simultaneous measurement of the four DNA bases...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2017-09, Vol.89 (18), p.10004-10012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Guanine (G), adenine (A), thymine (T), and cytosine (C) are the four basic constituents of DNA. Studies on DNA composition have focused especially on DNA damage and genotoxicity. However, the development of a rapid, simple, and multiplex method for the simultaneous measurement of the four DNA bases remains a challenge. In this study, we describe a graphite-based nanocomposite electrode (Au-rGO/MWCNT/graphite) that uses a simple electro-co-deposition approach. We successfully applied the developed sensor for multiplex detection of G, A, T, and C, using square-wave voltammetry. The sensor was tested using real animal and plant DNA samples in which the hydrolysis of T and C could be achieved with 8 mol L–1 of acid. The electrochemical sensor exhibited excellent sensitivity (G = 178.8 nA/μg mL–1, A = 92.9 nA/μg mL–1, T = 1.4 nA/μg mL–1, and C = 15.1 9 nA/μg mL–1), low limit of detection (G, A = 0.5 μg mL–1; T, C = 1.0 μg mL–1), and high selectivity in the presence of common interfering factors from biological matrixes. The reliability of the established method was assessed by method validation and comparison with the ultraperformance liquid chromatography technique, and a correlation of 103.7% was achieved. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.7b02432 |