Middle to Late Pleistocene loess record in eastern Nebraska, USA, and implications for the unique nature of Oxygen Isotope Stage 2

New subsurface data reveal a nearly continuous stratigraphic record of Middle to Late Pleistocene loess sedimentation preserved beneath upland summits in eastern Nebraska, USA. Thickness and grain size trends, as well as pedologic evidence, indicate significant changes in loess sources, accumulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quaternary science reviews 2007-03, Vol.26 (5), p.773-792
Hauptverfasser: Mason, J.A., Joeckel, R.M., Bettis, E.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New subsurface data reveal a nearly continuous stratigraphic record of Middle to Late Pleistocene loess sedimentation preserved beneath upland summits in eastern Nebraska, USA. Thickness and grain size trends, as well as pedologic evidence, indicate significant changes in loess sources, accumulation rates, and depositional environments. The newly defined Kennard Formation accumulated in the Middle Pleistocene, and may represent multiple thin increments of distal loess from nonglacial sources on the Great Plains. The overlying Loveland Loess, up to 18 m thick and deposited during Oxygen Isotope Stage 6 (OIS 6) (Illinoian glaciation), probably records the emergence of the Missouri River valley as a major glaciogenic loess source. The prominent Sangamon Geosol formed through long-term pedogenic alteration of the upper Loveland Loess during OIS 5 and 4. Thin loess of the Gilman Canyon Formation records slow loess accumulation and pedogenic alteration in OIS 3. The Peoria Loess (OIS 2) is similar in thickness to Loveland Loess, but may have accumulated more rapidly in an environment less favorable to bioturbation. More importantly, comparison of Peoria and Loveland loess thickness trends indicates much greater influx of nonglaciogenic loess from the Great Plains during OIS 2 than in OIS 6, suggesting colder and/or drier conditions in the Midcontinent during OIS 2 than in earlier glacial stages.
ISSN:0277-3791
1873-457X
DOI:10.1016/j.quascirev.2006.10.007