The use of a single inertial sensor to estimate 3-dimensional ground reaction force during accelerative running tasks

The purpose of this investigation was to determine the feasibility of using a single inertial measurement unit (IMU) placed on the sacrum to estimate 3-dimensional ground reaction force (F) during linear acceleration and change of direction tasks. Force plate measurements of F and estimates from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2017-08, Vol.61, p.263-268
Hauptverfasser: Gurchiek, Reed D., McGinnis, Ryan S., Needle, Alan R., McBride, Jeffrey M., van Werkhoven, Herman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this investigation was to determine the feasibility of using a single inertial measurement unit (IMU) placed on the sacrum to estimate 3-dimensional ground reaction force (F) during linear acceleration and change of direction tasks. Force plate measurements of F and estimates from the proposed IMU method were collected while subjects (n=15) performed a standing sprint start (SS) and a 45° change of direction task (COD). Error in the IMU estimate of step-averaged component and resultant F was quantified by comparison to estimates from the force plate using Bland-Altman 95% limits of agreement (LOA), root mean square error (RMSE), Pearson’s product-moment correlation coefficient (r), and the effect size (ES) of the differences between the two systems. RMSE of the IMU estimate of step-average F ranged from 37.70 N to 77.05 N with ES between 0.04 and 0.47 for SS while for COD, RMSE was between 54.19 N to 182.92 N with ES between 0.08 and 1.69. Correlation coefficients between the IMU and force plate measurements were significant (p≤0.05) for all values (r=0.53 to 0.95) except the medio-lateral component of step-average F. The average angular error in the IMU estimate of the orientation of step-average F was ≤10° for all tasks. The results of this study suggest the proposed IMU method may be used to estimate sagittal plane components and magnitude of step-average F during a linear standing sprint start as well as the vertical component and magnitude of step-average F during a 45° change of direction task.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2017.07.035