Comparison between absorption and biological activity on the efficiency of the biotrickling filtration of gaseous streams containing ammonia

Polluted air streams can be purified using biological treatments such as biotrickling filtration, which is one of the most widely accepted techniques successfully tuned to treat a wide variety of exhausted gaseous streams coming from a series of industrial sectors such as food processing, flavor man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2017-10, Vol.24 (29), p.23207-23218
Hauptverfasser: Copelli, Sabrina, Raboni, Massimo, Derudi, Marco, Nano, Giuseppe, Torretta, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polluted air streams can be purified using biological treatments such as biotrickling filtration, which is one of the most widely accepted techniques successfully tuned to treat a wide variety of exhausted gaseous streams coming from a series of industrial sectors such as food processing, flavor manufacturers, rendering, and composting. Since the degradation of a pollutant occurs at standard pressure and temperature, biotrickling filtration, whether compared with other more energy-demanding chemical-physical processes of abatement (such as scrubbing, catalytic oxidation, regenerative adsorption, incineration, advanced oxidation processes, etc.), represents a very high energy-efficient technology. Moreover, as an additional advantage, biodegradation offers the possibility of a complete mineralization of the polluting agents. In this work, biotrickling filtration has been considered in order to explore its efficiency with respect to the abatement of ammonia (which is a highly water-soluble compound). Moreover, a complete mathematical model has been developed in order to describe the dynamics of both absorption and biological activities which are the two dominant phenomena occurring into these systems. The results obtained in this work have shown that the absorption phenomenon is very important in order to define the global removal efficiency of ammonia from the gaseous stream (particularly, 44% of the ammonia is abated by water absorption). Moreover, it has been demonstrated (through the comparison between experimental results and theoretical simulations) that the action of bacteria, which enhance the rate of ammonia transfer to the liquid phase, can be modeled through a simple Michaelis-Menten relationship.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-017-9968-3