Sex and rank in competitive brood hierarchies influence stress levels in nestlings of a sexually dimorphic bird
Studies of sibling competition within brood hierarchies have rarely assessed simultaneously the effects of sex and rank in the brood hierarchy on traits other than offspring mortality and differential growth. We studied the expression of heat-shock proteins (Hsps) to assess the physiological stress...
Gespeichert in:
Veröffentlicht in: | Biological journal of the Linnean Society 2006-07, Vol.88 (3), p.383-390 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies of sibling competition within brood hierarchies have rarely assessed simultaneously the effects of sex and rank in the brood hierarchy on traits other than offspring mortality and differential growth. We studied the expression of heat-shock proteins (Hsps) to assess the physiological stress response to different combinations of sex and position within competitive brood hierarchies in the black kite Milvus migrans (Bodd.), a sexually dimorphic raptor showing facultative siblicide. Senior males showed higher stress levels than did senior females and younger siblings of each sex as revealed by Hsp60 values. The analysis of Hsp70 levels indicated that nestlings from broods in which the senior chick was a male showed higher stress levels than did nestlings from broods in which the senior chick was a female. In addition, levels of Hsp60 were related negatively to nutritional condition expressed as levels of plasmatic albumin. This suggests that the sex of senior chicks may be key in determining their stress level and that of their siblings, which is probably associated with sibling competition by fighting within brood hierarchies. The comparatively higher stress levels of senior males (and their siblings) may be a consequence of their ability to exploit their potential advantage from being the head start while avoiding a possible competitive disadvantage from being the smaller sex, independent of environmental conditions determining the probability of brood reduction. Differential stress levels depending on sex and rank in the brood hierarchy may be a consequence of parental control of offspring behaviour through differential resource allocation (e.g. yolk androgens) or it may reflect adaptations of particular chicks (senior males) to enhance their competitive ability within brood hierarchies. |
---|---|
ISSN: | 0024-4066 1095-8312 |
DOI: | 10.1111/j.1095-8312.2006.00625.x |