Estuarine capacity in removal of trace metals from contaminated river water, Southern Caspian Sea

In the present investigation, the flocculation of dissolved Cd, Cu, Ni, Pb, Mn and Zn with initial concentrations of 1, 2.5 and 5 mg/L in Tadjan River water during mixing with the Caspian Sea water has been studied in order to determine estuarine capacity to remove dissolved metals in the accidental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water and environment journal : WEJ 2008-09, Vol.22 (3), p.193-198
Hauptverfasser: Saeedi, Mohsen, Karbassi, Abdulreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present investigation, the flocculation of dissolved Cd, Cu, Ni, Pb, Mn and Zn with initial concentrations of 1, 2.5 and 5 mg/L in Tadjan River water during mixing with the Caspian Sea water has been studied in order to determine estuarine capacity to remove dissolved metals in the accidental contamination of the river. The flocculation process was investigated on a series of mixtures with salinities ranging from 0.1 to 11 p.p.t. The flocculation rates were indicative of the nonconservative behaviour of Cd, Cu, Ni, Pb, Mn and Zn during estuarine mixing. The order of the final flocculation rate of dissolved metals at 1, 2.5 and 5 mg/L of initial metal concentrations in the river water is as follows:Cu (99%)>Cd (95%)>Zn (88%)>Mn (85%)>Pb (83%)>Ni (73%), Cu(95.6%)>Pb(92.4%)>Cd (90%)>Zn(88.4%)>Mn (81.6%)>Ni(78.8%) and Cd (100%)>Cu(88%)>Ni (85.2%)>Pb (84%)>Zn (83.2%)>Mn (81.2%), respectively. The results also revealed that removal of dissolved metals is not influenced by pH changes and precipitation processes. The flocculation rates revealed that the overall dissolved metal pollution loads may be reduced to about 70% up to about more than 90% during estuarine mixing of Tadjan River with the Caspian Sea water.
ISSN:1747-6585
1747-6593
DOI:10.1111/j.1747-6593.2007.00101.x