Polyethylene Glycol-Poly-Lactide-co-Glycolide Block Copolymer-Based Nanoparticles as a Potential Tool for Off-Label Use of N-Acetylcysteine in the Treatment of Diastrophic Dysplasia

Potential off-label therapeutic role of N-acetylcysteine (N-Ac) was recently demonstrated in the treatment of diastrophic dysplasia (DTD) using mutant mice; its main drawback is the rapid clearance from blood due to the liver metabolism. Our goal was to investigate the potential of polyethylene glyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2017-12, Vol.106 (12), p.3631-3641
Hauptverfasser: Chiesa, Enrica, Monti, Luca, Paganini, Chiara, Dorati, Rossella, Conti, Bice, Modena, Tiziana, Rossi, Antonio, Genta, Ida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Potential off-label therapeutic role of N-acetylcysteine (N-Ac) was recently demonstrated in the treatment of diastrophic dysplasia (DTD) using mutant mice; its main drawback is the rapid clearance from blood due to the liver metabolism. Our goal was to investigate the potential of polyethylene glycol polylactide-co-glycolide block copolymer (PLGA-PEG)–based nanoparticles (NPs) in order to improve in vivo biodistribution performances and N-Ac pharmacokinetic profile after subcutaneous administration in mice. Results suggest that N-Ac can be effectively loaded into NPs (about 99 μg/mg NPs) using a suitably optimized nanoprecipitation method. Thanks to the good physical characteristics (mean diameter
ISSN:0022-3549
1520-6017
DOI:10.1016/j.xphs.2017.08.004