Oceanic circumpolar habitats of Antarctic krill

Surveys ofEuphausia superbaoften target localised shelves and ice edges where their growth rates and predation losses are atypically high. Emphasis on these areas has led to the current view that krill require high food concentrations, with a distribution often linked to shelves. For a wider, circum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine ecology. Progress series (Halstenbek) 2008-06, Vol.362, p.1-23
Hauptverfasser: Atkinson, A., Siegel, V., Pakhomov, E. A., Rothery, P., Loeb, V., Ross, R. M., Quetin, L. B., Schmidt, K., Fretwell, P., Murphy, E. J., Tarling, G. A., Fleming, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surveys ofEuphausia superbaoften target localised shelves and ice edges where their growth rates and predation losses are atypically high. Emphasis on these areas has led to the current view that krill require high food concentrations, with a distribution often linked to shelves. For a wider, circumpolar perspective, we compiled all available net-based density data on postlarvae from 8137 mainly summer stations from 1926 to 2004. Unlike Antarctic zooplankton, the distribution ofE. superbais highly uneven, with 70% of the total stock concentrated between longitudes 0° and 90°W. Within this Atlantic sector, krill are abundant over both continental shelf and ocean. At the Antarctic Peninsula they are found mainly over the inner shelf, whereas in the Indian–Pacific sectors krill prevail in the ocean within 200 to 300 km of the shelf break. Overall, 87% of the total stock lives over deep oceanic water (>2000 m), and krill occupy regions with moderate food concentrations (0.5 to 1.0 mg chlam–3). Advection models suggest some northwards loss from these regions and into the low chlorophyll belts of the Antarctic Circumpolar Current (ACC). We found possible evidence for a compensating southwards migration, with an increasing proportion of krill found south of the ACC as the season progresses. The retention of krill in moderately productive oceanic habitats is a key factor in their high total production. While growth rates are lower than over shelves, the ocean provides a refuge from shelf-based predators. The unusual circumpolar distribution of krill thus reflects a balance between advection, migration, top–down and bottom–up processes.
ISSN:0171-8630
1616-1599
DOI:10.3354/meps07498