PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments
The Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation tim...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2008-10, Vol.360 (1), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and – optionally, if backwater effects have a significant impact on the flow regime – a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) – portraying the rainfall–runoff process – and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF – essentially consisting of the coupled “hydrologic” PoNN and “hydrodynamic” MLFN – to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000
km
2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting. |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/j.jhydrol.2008.07.002 |