Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision

Although the neutron moisture meter (NMM) has served the need for accurate soil water content determinations well, increasing regulatory burdens, including the requirement that the NMM not be left unattended, limit the usefulness of the method. Newer methods, which respond to soil electromagnetic (E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vadose zone journal 2006-08, Vol.5 (3), p.894-907
Hauptverfasser: Evett, S.R, Tolk, J.A, Howell, T.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the neutron moisture meter (NMM) has served the need for accurate soil water content determinations well, increasing regulatory burdens, including the requirement that the NMM not be left unattended, limit the usefulness of the method. Newer methods, which respond to soil electromagnetic (EM) properties, typically allow data logging and unattended operation, but with uncertain precision, accuracy, and volume of sensitivity. In laboratory columns of three soils, we compared the Sentek EnviroSCAN and Diviner 2000 capacitance devices, the Delta-T PR1/6 Profiler capacitance probe, the Trime T3 tube-probe, all EM methods, with the NMM and conventional time domain reflectometry (TDR, also an EM method). All but conventional TDR can be used in access tubes. Measurements were made before, during, and after wetting to saturation in triplicate repacked columns of three soils ranging in total clay content from 17 to 48%. Each column was weighed continuously, and thermocouple determinations of temperature were made every 30 min throughout. All of the devices were sensitive to temperature except for the NMM, with conventional TDR being the least sensitive of the EM devices (sensitivity 0.01 m3 m-3 for the Trime and Delta-T devices. Accuracy of the devices was judged by the root mean squared difference (RMSD) between column mean water contents determined by mass balance and those determined by the devices using factory calibrations. Smaller values of the RMSD metric indicated more accurate factory calibration. The Delta-T system was least accurate, with an RMSD of 1.299 m3 m-3 at saturation. At saturation, the Diviner, EnviroSCAN, NMM, and Trime devices all exhibited
ISSN:1539-1663
1539-1663
DOI:10.2136/vzj2005.0149